×

Nonperturbative Mellin amplitudes: existence, properties, applications. (English) Zbl 1454.83145

Summary: We argue that nonperturbative CFT correlation functions admit a Mellin amplitude representation. Perturbative Mellin representation readily follows. We discuss the main properties of nonperturbative CFT Mellin amplitudes: subtractions, analyticity, unitarity, Polyakov conditions and polynomial boundedness at infinity. Mellin amplitudes are particularly simple for large \(N\) CFTs and 2D rational CFTs. We discuss these examples to illustrate our general discussion. We consider subtracted dispersion relations for Mellin amplitudes and use them to derive bootstrap bounds on CFTs. We combine crossing, dispersion relations and Polyakov conditions to write down a set of extremal functionals that act on the OPE data. We check these functionals using the known 3d Ising model OPE data and other known bootstrap constraints. We then apply them to holographic theories.

MSC:

83E30 String and superstring theories in gravitational theory
83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory

References:

[1] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009
[3] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
[4] S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP10 (2012) 106 [arXiv:1101.4163] [INSPIRE].
[5] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
[6] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE]. · Zbl 1301.81154
[7] A. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE]. · Zbl 1306.81225
[8] M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP10 (2011) 074 [arXiv:1107.1504] [INSPIRE]. · Zbl 1303.81122
[9] E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].
[10] L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP04 (2018) 014 [arXiv:1710.05923] [INSPIRE]. · Zbl 1390.83420
[11] K. Symanzik, On Calculations in conformal invariant field theories, Lett. Nuovo Cim.3 (1972) 734 [INSPIRE].
[12] N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B298 (1993) 363 [INSPIRE].
[13] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, From correlation functions to event shapes, Nucl. Phys. B884 (2014) 305 [arXiv:1309.0769] [INSPIRE]. · Zbl 1323.81084
[14] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Energy-Energy Correlations in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 071601 [arXiv:1311.6800] [INSPIRE]. · Zbl 1323.81056
[15] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett.118 (2017) 081601 [arXiv:1609.00572] [INSPIRE]. · Zbl 1380.81320
[16] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP05 (2017) 027 [arXiv:1611.08407] [INSPIRE]. · Zbl 1380.81320
[17] R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP12 (2018) 040 [arXiv:1809.10975] [INSPIRE].
[18] A. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239
[19] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
[20] S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE]. · Zbl 1398.83044
[21] Y. Kusuki, Light Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone Singularity, JHEP01 (2019) 025 [arXiv:1810.01335] [INSPIRE]. · Zbl 1409.81125
[22] S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE]. · Zbl 1416.81143
[23] N. Benjamin, H. Ooguri, S.-H. Shao and Y. Wang, Light-cone modular bootstrap and pure gravity, Phys. Rev. D100 (2019) 066029 [arXiv:1906.04184] [INSPIRE].
[24] J. Penedones, TASI lectures on AdS/CFT, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 75-136 (2017) [DOI] [arXiv:1608.04948] [INSPIRE]. · Zbl 1359.81146
[25] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE]. · Zbl 1382.81173
[26] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388
[27] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[28] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].
[29] I.A. Antipova, Inversion of many-dimensional mellin transforms and solutions of algebraic equations, Sb. Math.198 (2007) 447. · Zbl 1142.44006
[30] I.A. Antipova, Inversion of multidimensional mellin transforms, Russ. Math. Surv.62 (2007) 977. · Zbl 1148.44003
[31] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE]. · Zbl 1373.81335
[32] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].
[33] M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
[34] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP09 (2011) 123 [arXiv:1007.3243] [INSPIRE]. · Zbl 1301.81096
[35] L.F. Alday and A. Zhiboedov, Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP06 (2016) 091 [arXiv:1506.04659] [INSPIRE]. · Zbl 1388.81753
[36] T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].
[37] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE]. · Zbl 1397.81297
[38] B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE]. · Zbl 0988.81068
[39] B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U_q (SL(2, ℝ)), Commun. Math. Phys.224 (2001) 613 [math/0007097] [INSPIRE]. · Zbl 1010.33013
[40] J. Teschner, Liouville theory revisited, Class. Quant. Grav.18 (2001) R153 [hep-th/0104158] [INSPIRE]. · Zbl 1022.81047
[41] A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of Conformal Blocks, JHEP09 (2015) 019 [arXiv:1504.01737] [INSPIRE]. · Zbl 1388.81660
[42] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[43] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[44] A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1., Nuovo Cim. A42 (1965) 930 [INSPIRE]. · Zbl 0139.23204
[45] Y.-T. Huang, The space of EFT and CFT: behind the walls of cyclic polytopes, talk at Amplitudes (2018), SLAC National Accelerator Laboratory, 18-22 June 2018 [https://indico.cern.ch/event/646820/contributions/2992856/attachments/1670943/2680477/Amplitudes.pdf ].
[46] N. Arkani-Hamed, Y.-T. Huang and S.-H. Shao, On the Positive Geometry of Conformal Field Theory, JHEP06 (2019) 124 [arXiv:1812.07739] [INSPIRE]. · Zbl 1416.81133
[47] K. Sen, A. Sinha and A. Zahed, Positive geometry in the diagonal limit of the conformal bootstrap, JHEP11 (2019) 059 [arXiv:1906.07202] [INSPIRE]. · Zbl 1429.81077
[48] Y.-T. Huang, W. Li and G.-L. Lin, The geometry of optimal functionals, arXiv:1912.01273 [INSPIRE].
[49] A. Sever and A. Zhiboedov, On Fine Structure of Strings: The Universal Correction to the Veneziano Amplitude, JHEP06 (2018) 054 [arXiv:1707.05270] [INSPIRE]. · Zbl 1395.83114
[50] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE]. · Zbl 1383.81197
[51] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE]. · Zbl 1395.83012
[52] M. Mezei and G. Sárosi, Chaos in the butterfly cone, JHEP01 (2020) 186 [arXiv:1908.03574] [INSPIRE].
[53] B. Mukhametzhanov and A. Zhiboedov, Analytic Euclidean Bootstrap, JHEP10 (2019) 270 [arXiv:1808.03212] [INSPIRE]. · Zbl 1427.81142
[54] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[55] D. Carmi and S. Caron-Huot, A Conformal Dispersion Relation: Correlations from Absorption, arXiv:1910.12123 [INSPIRE].
[56] D. Mazac, Analytic bounds and emergence of AdS_2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE]. · Zbl 1378.81121
[57] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184
[58] A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP07 (2015) 026 [arXiv:1504.00772] [INSPIRE]. · Zbl 1388.83275
[59] O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP07 (2017) 036 [arXiv:1612.03891] [INSPIRE]. · Zbl 1380.81280
[60] L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from Crossing Symmetry, JHEP08 (2017) 147 [arXiv:1705.02318] [INSPIRE]. · Zbl 1381.81103
[61] S. Albayrak, D. Meltzer and D. Poland, More Analytic Bootstrap: Nonperturbative Effects and Fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE]. · Zbl 1421.81104
[62] M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP09 (2014) 064 [arXiv:1404.5625] [INSPIRE]. · Zbl 1333.83138
[63] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].
[64] L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge, JHEP07 (2017) 044 [arXiv:1606.09593] [INSPIRE]. · Zbl 1380.81281
[65] M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B711 (2005) 409 [hep-th/0407060] [INSPIRE]. · Zbl 1109.81350
[66] F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP09 (2004) 056 [hep-th/0405180] [INSPIRE].
[67] P.J. Heslop and P.S. Howe, Four point functions in N = 4 SYM, JHEP01 (2003) 043 [hep-th/0211252] [INSPIRE]. · Zbl 1226.81265
[68] F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B629 (2002) 3 [hep-th/0112251] [INSPIRE]. · Zbl 1039.81551
[69] B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B607 (2001) 191 [hep-th/0009106] [INSPIRE]. · Zbl 0969.81576
[70] B. Eden and E. Sokatchev, On the OPE of 1/2 BPS short operators in N = 4 SCFT_4 , Nucl. Phys. B618 (2001) 259 [hep-th/0106249] [INSPIRE]. · Zbl 0973.81118
[71] C. Beem, L. Rastelli and B.C. van Rees, The \(\mathcal{N} = 4\) Superconformal Bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · Zbl 1388.81482
[72] C. Beem, L. Rastelli and B.C. van Rees, More \(\mathcal{N} = 4\) superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
[73] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Event shapes in \(\mathcal{N} = 4\) super-Yang-Mills theory, Nucl. Phys. B884 (2014) 206 [arXiv:1309.1424] [INSPIRE]. · Zbl 1323.81056
[74] L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE].
[75] D. Meltzer, AdS/CFT Unitarity at Higher Loops: High-Energy String Scattering, JHEP05 (2020) 133 [arXiv:1912.05580] [INSPIRE]. · Zbl 1437.83143
[76] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
[77] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B241 (1984) 333 [INSPIRE]. · Zbl 0661.17013
[78] V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B240 (1984) 312 [INSPIRE].
[79] V.S. Dotsenko and V.A. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c ¡ 1, Nucl. Phys. B251 (1985) 691 [INSPIRE].
[80] P. Furlan and V.B. Petkova, Toward solvable four-dimensional conformal theories, Mod. Phys. Lett. A4 (1989) 227 [INSPIRE].
[81] D.A. Lowe, Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature, Phys. Lett. B760 (2016) 494 [arXiv:1602.05613] [INSPIRE]. · Zbl 1398.81217
[82] V.S. Dotsenko, Śerie de cours sur la th́eorie conforme, DEA (2006) [cel-00092929].
[83] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York (1997) [DOI] [INSPIRE]. · Zbl 0869.53052
[84] S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE]. · Zbl 1272.81178
[85] S. Ribault and R. Santachiara, Liouville theory with a central charge less than one, JHEP08 (2015) 109 [arXiv:1503.02067] [INSPIRE]. · Zbl 1388.81694
[86] P. Furlan and V.B. Petkova, Virasoro symmetry in a 2h-dimensional model and its implications, hep-th/0409213 [INSPIRE]. · Zbl 1138.81436
[87] P. Furlan and V.B. Petkova, On some Coulomb gas integrals in higher dimensions, arXiv:1806.03270 [INSPIRE]. · Zbl 1388.81661
[88] S. Pasquetti and M. Sacchi, 3d dualities from 2d free field correlators: recombination and rank stabilization, JHEP01 (2020) 061 [arXiv:1905.05807] [INSPIRE]. · Zbl 1434.81129
[89] S. Pasquetti and M. Sacchi, From 3d dualities to 2d free field correlators and back, JHEP11 (2019) 081 [arXiv:1903.10817] [INSPIRE]. · Zbl 1429.81093
[90] M. Dodelson and H. Ooguri, High-energy behavior of Mellin amplitudes, Phys. Rev. D101 (2020) 066008 [arXiv:1911.05274] [INSPIRE].
[91] D. Ponomarev, A Note on (Non)-Locality in Holographic Higher Spin Theories, Universe4 (2018) 2 [arXiv:1710.00403] [INSPIRE].
[92] G.J. Turiaci and A. Zhiboedov, Veneziano Amplitude of Vasiliev Theory, JHEP10 (2018) 034 [arXiv:1802.04390] [INSPIRE]. · Zbl 1402.81232
[93] J. Penedones, J. Silva and A. Zhiboedov, work in progress.
[94] D. Mazáč, L. Rastelli and X. Zhou, A Basis of Analytic Functionals for CFTs in General Dimension, arXiv:1910.12855 [INSPIRE]. · Zbl 1431.81139
[95] C. Sleight and M. Taronna, The Unique Polyakov Blocks, arXiv:1912.07998 [INSPIRE].
[96] V. Gonçalves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP10 (2015) 040 [arXiv:1410.4185] [INSPIRE]. · Zbl 1388.81982
[97] H.-Y. Chen, E.-J. Kuo and H. Kyono, Towards Spinning Mellin Amplitudes, Nucl. Phys. B931 (2018) 291 [arXiv:1712.07991] [INSPIRE]. · Zbl 1390.81496
[98] C. Sleight and M. Taronna, Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE]. · Zbl 1404.81242
[99] L. Rastelli and X. Zhou, The Mellin Formalism for Boundary CFT_d , JHEP10 (2017) 146 [arXiv:1705.05362] [INSPIRE]. · Zbl 1383.81254
[100] V. Goncalves and G. Itsios, A note on defect Mellin amplitudes, arXiv:1803.06721 [INSPIRE].
[101] P. Haldar and A. Sinha, Froissart bound for/from CFT Mellin amplitudes, SciPost Phys.8 (2020) 095 [arXiv:1911.05974] [INSPIRE].
[102] C. Sleight, A Mellin Space Approach to Cosmological Correlators, JHEP01 (2020) 090 [arXiv:1906.12302] [INSPIRE]. · Zbl 1434.81117
[103] C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP02 (2020) 098 [arXiv:1907.01143] [INSPIRE]. · Zbl 1435.81174
[104] D. Mazáč, A Crossing-Symmetric OPE Inversion Formula, JHEP06 (2019) 082 [arXiv:1812.02254] [INSPIRE]. · Zbl 1416.81162
[105] A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys.142 (2005) 183 [hep-th/0505063] [INSPIRE]. · Zbl 1178.81241
[106] J. Teschner, On the Liouville three point function, Phys. Lett. B363 (1995) 65 [hep-th/9507109] [INSPIRE]. · Zbl 0856.05055
[107] P. Garrett, Modern Analysis of Automorphic Forms By Example, vol. 1 of Cambridge Studies in Advanced Mathematics, Cambridge University Press (2018) [DOI]. · Zbl 1487.11002
[108] W. Li, New method for the conformal bootstrap with OPE truncations, arXiv:1711.09075 [INSPIRE].
[109] V. Goncalves, Skeleton expansion and large spin bootstrap for ϕ^3theory, arXiv:1809.09572 [INSPIRE].
[110] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, arXiv:1904.05905 [INSPIRE].
[111] C. Cardona, S. Guha, S.K. KaNuMIlli and K. Sen, Resummation at finite conformal spin, JHEP01 (2019) 077 [arXiv:1811.00213] [INSPIRE]. · Zbl 1447.81177
[112] C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP11 (2018) 052 [arXiv:1806.10919] [INSPIRE]. · Zbl 1404.81220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.