×

Direct numerical simulation of turbulent flow through a ribbed square duct. (English) Zbl 1460.76550

Summary: In this research turbulent flow in a ribbed square duct of different blockage ratios \((Br=0.05, 0.1\) and 0.2) at a fixed Reynolds number of \(Re_b=5600\) is studied using direct numerical simulation. The results are compared with those of a smooth duct flow. In contrast to the classical two-dimensional rib-roughened boundary-layer flow over a flat plate, the turbulence field is influenced by not only the rib elements but also the four duct sidewalls. The results detail out the three-dimensional effects of the sidewalls and ribs on flow statistics and structures. This study also aims at investigating the effect of blockage ratio on local non-equilibrium of turbulence, large- and small-scale flow anisotropy, and transport of turbulence kinetic energy. It is observed that as the rib height increases, the pressure near the windward face of the rib increases significantly, associated with an accelerated streamwise flow in the duct. Furthermore, an augmentation of the blockage ratio concurrently generates stronger turbulent secondary flow motions, resulting in larger magnitudes of Reynolds stresses near the rib crest. The secondary flow motions drastically alter the turbulent transport processes between the sidewall and duct centre, giving rise to high degrees of non-equilibrium states. The dynamics of coherent structures are studied by examining characteristics of the instantaneous velocity field, swirling strength, temporal auto-correlations, spatial two-point auto-correlations and velocity spectra. The results show that an increase of rib height significantly promotes the ejection and sweep events, which subsequently amplify the strength of vortical motions near the rib crest.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F35 Convective turbulence
Full Text: DOI

References:

[1] Adrian, R. J.2007Hairpin vortex organization in wall turbulence. Phys. Fluids19, 041301. · Zbl 1146.76307
[2] Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.2000Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.422, 1-54. · Zbl 0959.76503
[3] Andreopoulos, J. & Bradshaw, P.1981Measurements of turbulence structure in the boundary layer on a rough surface. Boundary-Layer Meteorol.20, 201-213.
[4] Bandyopadhyay, P. R.1987Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech.180, 231-266.
[5] Bhaganagar, K.2008Direct numerical simulation of unsteady flow in channel with rough walls. Phys. Fluids20, 101508. · Zbl 1182.76059
[6] Bhaganagar, K. & Chau, L.2015Characterizing turbulent flow over 3-D idealized and irregular rough surfaces at low Reynolds number. Appl. Math. Model.39, 6751-6766. · Zbl 1443.76013
[7] Bhaganagar, K., Kim, J. & Coleman, G.2004Effect of roughness on wall-bounded turbulence. Flow Turbul. Combust.72, 463-492. · Zbl 1081.76555
[8] Borello, D., Salvagni, A. & Hanjalić, K.2015Effects of rotation on flow in an asymmetric rib-roughened duct: LES study. Intl J. Heat Fluid Flow55, 104-119.
[9] Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R. A.2008Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid Mech.600, 403-426. · Zbl 1151.76313
[10] Casarsa, L. & Arts, T.2005Experimental investigation of the aerothermal performance of a high blockage rib-roughened cooling channel. Trans. ASME: J. Turbomach127, 580-588.
[11] Chan, L., Macdonald, M., Chung, D., Hutchins, N. & Ooi, A.2015A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech.771, 743-777.
[12] Chernyshenko, S. I. & Baig, M. F.2005The mechanism of streak formation in near-wall turbulence. J. Fluid Mech.544, 99-131. · Zbl 1083.76031
[13] Choi, H., Moin, P. & Kim, J.1993Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech.255, 503-539. · Zbl 0800.76296
[14] Christensen, K. T. & Adrian, R. J.2001Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech.431, 433-443. · Zbl 1008.76029
[15] Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E.2007Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech.589, 375-409. · Zbl 1141.76399
[16] Coletti, F., Cresci, I. & Arts, T.2013Spatio-temporal analysis of the turbulent flow in a ribbed channel. Intl J. Heat Fluid Flow44, 181-196.
[17] Coletti, F., Lo Jacono, D., Cresci, I. & Arts, T.2014Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces. Phys. Fluids26, 045111.
[18] Coletti, F., Maurer, T., Arts, T. & Di Sante, A.2012Flow field investigation in rotating rib-roughened channel by means of particle image velocimetry. Exp. Fluids52, 1043-1061.
[19] Fang, X., Yang, Z., Wang, B. C., Tachie, M. F. & Bergstrom, D. J.2015Highly-disturbed turbulent flow in a square channel with V-shaped ribs on one wall. Intl J. Heat Fluid Flow56, 182-197.
[20] Fang, X., Yang, Z., Wang, B.-C., Tachie, M. F. & Bergstrom, D. J.2017Large-eddy simulation of turbulent flow and structures in a square duct roughened with perpendicular and V-shaped ribs. Phys. Fluids29, 065110.
[21] Gavrilakis, S.1992Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech.244, 101-129.
[22] Griffith, B. E. & Patankar, N. A.2020Immersed methods for fluid-structure interaction. Annu. Rev. Fluid Mech.52, 421. · Zbl 1439.76140
[23] Han, J. C., Dutta, S. & Ekkad, S.2012Gas Turbine Heat Transfer and Cooling Technology. CRC.
[24] Hirota, M., Yokosawa, H. & Fujita, H.1992Turbulence kinetic energy in turbulent flows through square ducts with rib-roughened walls. Intl J. Heat Fluid Flow13, 22-29.
[25] Hurther, D., Lemmin, U. & Terray, E. A.2007Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S). J. Fluid Mech.574, 465-493. · Zbl 1108.76312
[26] Ikeda, T. & Durbin, P. A.2007Direct simulations of a rough-wall channel flow. J. Fluid Mech.571, 235-263. · Zbl 1120.76030
[27] Ismail, U., Zaki, T. A. & Durbin, P. A.2018Simulations of rib-roughened rough-to-smooth turbulent channel flows. J. Fluid Mech.843, 419-449. · Zbl 1430.76307
[28] Jackson, P. S.1981On the displacement height in the logarithmic velocity profile. J. Fluid Mech.111, 15-25. · Zbl 0482.76053
[29] Keirsbulck, L., Labraga, L., Mazouz, A. & Tournier, C.2002Surface roughness effects on turbulent boundary layer structures. Trans. ASME: J. Fluids Engng124, 127-135.
[30] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177, 133-166. · Zbl 0616.76071
[31] Krogstad, P.-Å., Andersson, H. I., Bakken, O. M. & Ashrafian, A.2005An experimental and numerical study of channel flow with rough walls. J. Fluid Mech.530, 327-352. · Zbl 1152.76308
[32] Krogstad, P.-Å. & Antonia, R. A.1994Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech.277, 1-21.
[33] Krogstad, P.-Å. & Antonia, R. A.1999Surface roughness effects in turbulent boundary layers. Exp. Fluids27, 450-460.
[34] Labbé, O.2013Large-eddy-simulation of flow and heat transfer in a ribbed duct. Comput. Fluids76, 23-32. · Zbl 1391.76230
[35] Lamballais, E., Lesieur, M. & Métais, O.1997Probability distribution functions and coherent structures in a turbulent channel. Phys. Rev. E56, 6761-6766.
[36] Lee, J. H., Sung, H. J. & Krogstad, P.-Å.2011Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech.669, 397-431. · Zbl 1225.76163
[37] Leonardi, S. & Castro, I. P.2010Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech.651, 519-539. · Zbl 1189.76124
[38] Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A.2004Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow25, 384-392. · Zbl 1382.76141
[39] Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A.2003Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech.491, 229-238. · Zbl 1063.76576
[40] Liou, T. M., Wu, Y. Y. & Chang, Y.1993LDV measurements of periodic fully developed main and secondary flows in a channel with rib-disturbed walls. Trans. ASME: J. Fluids Engng115, 109-114.
[41] Liu, Y. Z., Ke, F. & Sung, H. J.2008Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. J. Fluids Struct.24, 366-381.
[42] Lohász, M. M., Rambaud, P. & Benocci, C.2006Flow features in a fully developed ribbed duct flow as a result of miles. Flow Turbul. Combust.77, 59-76. · Zbl 1138.76313
[43] Macdonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A.2016Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech.763, 130-161.
[44] Mazouz, A., Labraga, L. & Tournier, C.1998Anisotropy invariants of Reynolds stress tensor in a duct flow and turbulent boundary layer. Trans. ASME: J. Fluids Engng120, 280-284.
[45] Mittal, R. & Iaccarino, G.2005Immersed boundary methods. Annu. Rev. Fluid Mech.37, 239-261. · Zbl 1117.76049
[46] Mompean, G., Gavrilakis, S., Machiels, L. & Deville, M. O.1996On predicting the turbulence-induced secondary flows using nonlinear \({k}-\varepsilon\) models. Phys. Fluids8, 1856-1868. · Zbl 1027.76600
[47] Moser, R. D. & Moin, P.1987The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech.175, 479-510.
[48] Nagano, Y., Hattori, H. & Houra, T.2004DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow25, 393-403.
[49] Noormohammadi, A. & Wang, B.-C.2019DNS study of passive plume interference emitting from two parallel line sources in a turbulent channel flow. Intl J. Heat Fluid Flow77, 202-216.
[50] Orlandi, P., Lenoardi, S. & Antonia, R. A.2006Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech.561, 279-305. · Zbl 1157.76343
[51] Perry, A. E., Schofield, W. H. & Joubert, P. N.1969Rough wall turbulent boundary layers. J. Fluid Mech.37, 383-413.
[52] Peskin, C. S.1972Flow patterns around heart valves: a numerical method. J. Comput. Phys.10, 252-271. · Zbl 0244.92002
[53] Philips, D. A., Rossi, R. & Iaccarino, G.2013Large-eddy simulation of passive scalar dispersion in an urban-like canopy. J. Fluid Mech.723, 404-428. · Zbl 1287.76149
[54] Pinelli, A., Naqavi, I. Z., Piomelli, U. & Favier, J.2010aImmersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. J. Comput. Phys.229, 9073-9091. · Zbl 1427.76053
[55] Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G.2010bReynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech.644, 107-122. · Zbl 1189.76265
[56] Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F.2018Turbulence and secondary motions in square duct flow. J. Fluid Mech.840, 631-655. · Zbl 1419.76326
[57] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[58] Rouhi, A., Chung, D. & Hutchins, N.2019Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes. J. Fluid Mech.866, 450-486. · Zbl 1415.76358
[59] Scotti, A.2006Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids18, 031701.
[60] Sewall, E. A., Tafti, D. K., Graham, A. B. & Thole, K. A.2006Experimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed duct. Intl J. Heat Fluid Flow27, 243-258.
[61] Shafi, H. S. & Antonia, R. A.1997Small-scale characteristics of a turbulent boundary layer over a rough wall. J. Fluid Mech.342, 263-293.
[62] Shishkina, O. & Wagner, C.2011Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech.686, 568-582. · Zbl 1241.76271
[63] Speziale, C. G. & Gatski, T. B.1997Analysis and modelling of anisotropies in the dissipation rate of turbulence. J. Fluid Mech.344, 155-180. · Zbl 0898.76048
[64] Thom, A. S.1971Momentum absorption by vegetation. Q. J. R. Meteorol. Soc.97, 414-428.
[65] Townsend, A. A. R.1980The Structure of Turbulent Shear Flow. Cambridge University Press. · Zbl 0435.76033
[66] Vinuesa, R., Noorani, A., Lozano-Durán, A., Khoury, G. K. E., Schlatter, P., Fischer, P. F. & Nagib, H. M.2014Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul.15, 677-706.
[67] Volino, R. J., Schultz, M. P. & Flack, K. A.2009Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech.635, 75-101. · Zbl 1183.76055
[68] Wagner, S. & Shishkina, O.2015Heat flux enhancement by regular surface roughness in turbulent thermal convection. J. Fluid Mech.763, 109-135.
[69] Wang, L., Hejcik, J. & Sunden, B.2007PIV measurement of separated flow in a square channel with streamwise periodic ribs on one wall. Trans. ASME: J. Fluids Engng129, 834-841.
[70] Wang, L., Salewski, M. & Sundén, B.2010Turbulent flow in a ribbed channel: flow structures in the vicinity of a rib. Exp. Therm. Fluid Sci.34, 165-176.
[71] Wang, L. & Sundén, B.2005Experimental investigation of local heat transfer in a square duct with continuous and truncated ribs. Exp. Heat Trans.18, 179-197.
[72] Xun, Q.-Q. & Wang, B.-C.2016Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel. Phys. Fluids28, 075101.
[73] Yaglom, A. M. & Kader, B. A.1974Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and peclet numbers. J. Fluid Mech.62, 601-623. · Zbl 0272.76032
[74] Yang, D. & Shen, L.2010Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech.650, 131-180. · Zbl 1189.76267
[75] Yokosawa, H., Fujita, H., Hirota, M. & Iwata, S.1989Measurement of turbulent flow in a square duct with roughened walls on two opposite sides. Intl J. Heat Fluid Flow10, 125-130.
[76] Yuan, J. & Piomelli, U.2014Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech.760, 1-11.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.