×

Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. (English) Zbl 1225.76163

Summary: Direct numerical simulation (DNS) of a spatially developing turbulent boundary layer (TBL) over a wall roughened with regularly arrayed cubes was performed to investigate the effects of three-dimensional (3-D) surface elements on the properties of the TBL. The cubes were staggered in the downstream direction and periodically arranged in the streamwise and spanwise directions with pitches of \(p_{x}/k = 8\) and \(p_{z}/k = 2\), where \(p_{x}\) and \(p_{z}\) are the streamwise and spanwise spacings of the cubes and \(k\) is the roughness height. The Reynolds number based on the momentum thickness was varied in the range \(Re_{\theta } = 300 - 1300\), and the roughness height was \(k = 1.5\theta_{in}\), where \(\theta_{in}\) is the momentum thickness at the inlet, which corresponds to \(k/\delta = 0.052-0.174\) from the inlet to the outlet; \(\delta\) is the boundary layer thickness. The characteristics of the TBL over the 3-D cube-roughened wall were compared with the results from a DNS of the TBL over a two-dimensional (2-D) rod-roughened wall. The introduction of cube roughness affected the turbulent Reynolds stresses not only in the roughness sublayer but also in the outer layer. The present instantaneous flow field and linear stochastic estimations of the conditional averaging showed that the streaky structures in the near-wall region and the low-momentum regions and hairpin packets in the outer layer are dominant features in the TBLs over the 2-D and 3-D rough walls and that these features are significantly affected by the surface roughness throughout the entire boundary layer. In the outer layer, however, it was shown that the large-scale structures over the 2-D and 3-D roughened walls have similar characteristics, which indicates that the dimensional difference between the surfaces with 2-D and 3-D roughness has a negligible effect on the turbulence statistics and coherent structures of the TBLs.

MSC:

76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] DOI: 10.1007/s003480050370 · doi:10.1007/s003480050370
[2] DOI: 10.1017/S0022112092000594 · doi:10.1017/S0022112092000594
[3] DOI: 10.1017/S0022112005003824 · Zbl 1152.76308 · doi:10.1017/S0022112005003824
[4] Kline, Near-Wall Turbulence pp 218– (1989)
[5] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[6] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[7] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[8] DOI: 10.1017/S0022112010000960 · Zbl 1197.76013 · doi:10.1017/S0022112010000960
[9] DOI: 10.1006/jcph.2001.6778 · Zbl 1057.76039 · doi:10.1006/jcph.2001.6778
[10] DOI: 10.1063/1.2741256 · Zbl 1182.76832 · doi:10.1063/1.2741256
[11] DOI: 10.1017/S0022112009007617 · Zbl 1183.76055 · doi:10.1017/S0022112009007617
[12] DOI: 10.1002/fld.205 · Zbl 1059.76046 · doi:10.1002/fld.205
[13] DOI: 10.1115/1.1445141 · doi:10.1115/1.1445141
[14] DOI: 10.1017/S0022112007008518 · Zbl 1151.76359 · doi:10.1017/S0022112007008518
[15] DOI: 10.1146/annurev.fluid.36.050802.122103 · Zbl 1125.76348 · doi:10.1146/annurev.fluid.36.050802.122103
[16] Townsend, The Structure of Turbulent Shear Flow pp 429– (1976)
[17] DOI: 10.1017/S0022112081002279 · Zbl 0482.76053 · doi:10.1017/S0022112081002279
[18] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[19] DOI: 10.1017/S0022112002003270 · Zbl 1032.76500 · doi:10.1017/S0022112002003270
[20] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[21] DOI: 10.1017/S0022112004002277 · Zbl 1060.76503 · doi:10.1017/S0022112004002277
[22] DOI: 10.1016/S0167-6105(01)00114-3 · doi:10.1016/S0167-6105(01)00114-3
[23] DOI: 10.1063/1.2757708 · Zbl 1182.76248 · doi:10.1063/1.2757708
[24] DOI: 10.1016/S0997-7546(01)01152-9 · Zbl 0981.76500 · doi:10.1016/S0997-7546(01)01152-9
[25] DOI: 10.1007/s00348-007-0372-5 · doi:10.1007/s00348-007-0372-5
[26] DOI: 10.1017/S0022112006001467 · Zbl 1178.76049 · doi:10.1017/S0022112006001467
[27] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[28] DOI: 10.1115/1.3119492 · doi:10.1115/1.3119492
[29] DOI: 10.1007/s10546-006-9076-2 · doi:10.1007/s10546-006-9076-2
[30] DOI: 10.1017/S0022112069000619 · doi:10.1017/S0022112069000619
[31] DOI: 10.1023/A:1016060103448 · doi:10.1023/A:1016060103448
[32] DOI: 10.1080/14685240600827526 · doi:10.1080/14685240600827526
[33] DOI: 10.1017/S0022112007006921 · Zbl 1178.76011 · doi:10.1017/S0022112007006921
[34] Bogard, J. Fluid Mech. 76 pp 89– (1986)
[35] DOI: 10.1063/1.1589014 · Zbl 1186.76353 · doi:10.1063/1.1589014
[36] DOI: 10.1023/B:APPL.0000044407.34121.64 · Zbl 1081.76555 · doi:10.1023/B:APPL.0000044407.34121.64
[37] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
[38] DOI: 10.1063/1.1900146 · Zbl 1187.76033 · doi:10.1063/1.1900146
[39] DOI: 10.1017/S0022112003005500 · Zbl 1063.76576 · doi:10.1017/S0022112003005500
[40] DOI: 10.1016/j.ijheatfluidflow.2004.02.004 · doi:10.1016/j.ijheatfluidflow.2004.02.004
[41] DOI: 10.1016/j.ijheatfluidflow.2004.02.022 · doi:10.1016/j.ijheatfluidflow.2004.02.022
[42] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[43] DOI: 10.1017/S002211200999423X · Zbl 1189.76124 · doi:10.1017/S002211200999423X
[44] Adrian, Eddy Structure Identification pp 145– (1996) · doi:10.1007/978-3-7091-2676-9_3
[45] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[46] Schultz, Bull. Am. Phys. Soc. 54 pp 177– (2009)
[47] DOI: 10.1017/S0022112001003512 · Zbl 1008.76029 · doi:10.1017/S0022112001003512
[48] DOI: 10.1017/S0022112007005502 · Zbl 1113.76009 · doi:10.1017/S0022112007005502
[49] DOI: 10.1007/s00348-004-0903-2 · doi:10.1007/s00348-004-0903-2
[50] DOI: 10.1017/S0022112007006465 · Zbl 1175.76078 · doi:10.1017/S0022112007006465
[51] DOI: 10.1016/j.ijheatfluidflow.2009.08.002 · doi:10.1016/j.ijheatfluidflow.2009.08.002
[52] Krogstad, Conference on Modelling Fluid Flow pp 568– (2006)
[53] DOI: 10.1017/S0022112094002661 · doi:10.1017/S0022112094002661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.