×

Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes. (English) Zbl 1415.76358

Summary: Direct numerical simulations (DNS) are reported for open-channel flow over streamwise-alternating patches of smooth and fully rough walls. The rough patch is a three-dimensional sinusoidal surface. Owing to the streamwise periodicity, the flow configuration consists of a step change from smooth to rough, and a step change from rough to smooth. The friction Reynolds number varies from 437 over the smooth patch to 704 over the rough patch. Through the fully resolved DNS dataset it is possible to explore many detailed aspects of this flow. Two aspects motivate this work. The first one is the equilibrium assumption that has been widely used in both experiments and computations. However, it is not clear where this assumption is valid. The detailed DNS data reveal a significant departure from equilibrium, in particular over the smooth patch. Over this patch, the mean velocity is recovered up to the beginning of the log layer after a fetch of five times the channel height. However, over the rough patch, the same recovery level is reached after a fetch of two times the channel height. This conclusion is arrived at by assuming that an error of up to 5 % is acceptable and the log layer, classically, starts from 30 wall units above the wall. The second aspect is the reported internal boundary-layer (IBL) growth rates in the literature, which are inconsistent with each other. This is conjectured to be partly caused by the diverse IBL definitions. Five common definitions are applied for the same DNS dataset. The resulting IBL thicknesses are different by 100%, and their apparent power-law exponents are different by 50%. The IBL concept, as a layer within which the flow feels the surface underneath, is taken as the basis to search for the proper definition. The definition based on the logarithmic slope of the velocity profile, as proposed by W. P. Elliott [“The growth of the atmospheric internal boundary layer”, Trans. Am. Geophys. Union 39, No. 6, 1048–1054 (1958; doi:10.1029/TR039i006p01048)], yields better consistency with this concept based on turbulence characteristics.

MSC:

76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence

References:

[1] Albertson, J. D. & Parlange, M. B.1999aNatural integration of scalar fluxes from complex terrain. Adv. Water Resour.23, 239-252.10.1016/S0309-1708(99)00011-1 · doi:10.1016/S0309-1708(99)00011-1
[2] Albertson, J. D. & Parlange, M. B.1999bSurface length scales and shear stress: implications for land – atmosphere interaction over complex terrain. Water Resour. Res.35, 2121-2132.10.1029/1999WR900094 · doi:10.1029/1999WR900094
[3] Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A.2015Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech.768, 316-347.10.1017/jfm.2015.91 · doi:10.1017/jfm.2015.91
[4] Andreopoulos, J. & Wood, D. H.1982The response of a turbulent boundary layer to a short length of surface roughness. J. Fluid Mech.118, 143-164.10.1017/S0022112082001001 · doi:10.1017/S0022112082001001
[5] Antonia, R. A. & Luxton, R. E.1971The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech.48, 721-761.10.1017/S0022112071001824 · doi:10.1017/S0022112071001824
[6] Antonia, R. A. & Luxton, R. E.1972The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J. Fluid Mech.53, 737-757.10.1017/S002211207200045X · doi:10.1017/S002211207200045X
[7] Bou-Zeid, E., Meneveau, C. & Parlange, M. B.2004Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res.40, W02505.10.1029/2003WR002475 · Zbl 1187.76065 · doi:10.1029/2003WR002475
[8] Bou-Zeid, E., Meneveau, C. & Parlange, M. B.2005A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids17, 025105.10.1063/1.1839152 · Zbl 1187.76065 · doi:10.1063/1.1839152
[9] Bou-Zeid, E., Parlange, M. B. & Meneveau, C.2007On the parameterization of surface roughness at regional scales. J. Atmos. Sci.64, 216-227.10.1175/JAS3826.1 · Zbl 1187.76065 · doi:10.1175/JAS3826.1
[10] Bradley, E. F.1968A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness. Q. J. R. Meteorol. Soc.94, 361-379.10.1002/qj.49709440111 · doi:10.1002/qj.49709440111
[11] Brutsaert, W.1998Land-surface water vapor and sensible heat flux: spatial variability, homogeneity, and measurement scales. Water Resour. Res.34, 2433-2442.10.1029/98WR01340 · doi:10.1029/98WR01340
[12] Calaf, M., Meneveau, C. & Meyers, J.2010Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids22, 015110.10.1063/1.3291077 · Zbl 1183.76123 · doi:10.1063/1.3291077
[13] Carper, M. A. & Porté-Agel, F.2008Subfilter-scale fluxes over a surface roughness transition. Part I: measured fluxes and energy transfer rates. Boundary-Layer Meteorol.126, 157-179.10.1007/s10546-007-9228-z · doi:10.1007/s10546-007-9228-z
[14] Chamorro, L. P. & Porté-Agel, F.2009Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: a simple new model. Boundary-Layer Meteorol.130, 29-41.10.1007/s10546-008-9330-x · doi:10.1007/s10546-008-9330-x
[15] Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A.2015A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech.771, 743-777.10.1017/jfm.2015.172 · doi:10.1017/jfm.2015.172
[16] Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A.2018Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech.854, 5-33.10.1017/jfm.2018.570 · Zbl 1415.76326 · doi:10.1017/jfm.2018.570
[17] Cheng, H. & Castro, I. P.2002Near-wall flow development after a step change in surface roughness. Boundary-Layer Meteorol.105, 411-432.10.1023/A:1020355306788 · doi:10.1023/A:1020355306788
[18] Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A.2015A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech.773, 418-431.10.1017/jfm.2015.230 · doi:10.1017/jfm.2015.230
[19] Chung, D., Monty, J. P. & Ooi, A.2014An idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulence. J. Fluid Mech.742, R3.10.1017/jfm.2014.17 · doi:10.1017/jfm.2014.17
[20] Dupont, S. & Brunet, Y.2009Coherent structures in canopy edge flow: a large-eddy simulation study. J. Fluid Mech.630, 93-128.10.1017/S0022112009006739 · Zbl 1181.76089 · doi:10.1017/S0022112009006739
[21] Efros, V. & Krogstad, P.2011Development of a turbulent boundary layer after a step from smooth to rough surface. Exp. Fluids51, 1563-1575.10.1007/s00348-011-1167-2 · doi:10.1007/s00348-011-1167-2
[22] Elliott, W. P.1958The growth of the atmospheric internal boundary layer. Trans. Am. Geophys. Union39, 1048-1054.10.1029/TR039i006p01048 · doi:10.1029/TR039i006p01048
[23] Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J.2000Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys.161, 35-60.10.1006/jcph.2000.6484 · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[24] Ham, F., Mattsson, K. & Iaccarino, G.2006Accurate and stable finite volume operators for unstructured flow solvers. In Center of Turbulence Research Annual Research Briefs, pp. 243-261. Stanford University.
[25] Hanson, R. E. & Ganapathisubramani, B.2016Development of turbulent boundary layers past a step change in wall roughness. J. Fluid Mech.795, 494-523.10.1017/jfm.2016.213 · Zbl 1359.76141 · doi:10.1017/jfm.2016.213
[26] Ismail, U., Zaki, T. A. & Durbin, P. A.2018Simulations of rib-roughened rough-to-smooth turbulent channel flows. J. Fluid Mech.843, 419-449.10.1017/jfm.2018.119 · Zbl 1430.76307 · doi:10.1017/jfm.2018.119
[27] Jacobi, I. & McKeon, B. J.2011New perspectives on the impulsive roughness-perturbation of a turbulent boundary layer. J. Fluid Mech.677, 179-203.10.1017/jfm.2011.75 · Zbl 1241.76280 · doi:10.1017/jfm.2011.75
[28] Jegede, O. O. & Foken, T. H.1999A study of the internal boundary layer due to a roughness change in neutral conditions observed during the linex field campaigns. Theor. Appl. Climatol.62, 31-41.10.1007/s007040050072 · doi:10.1007/s007040050072
[29] Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y.2010Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech.657, 335-360.10.1017/S0022112010001370 · Zbl 1197.76063 · doi:10.1017/S0022112010001370
[30] Kaimal, J. C. & Finnigan, J. J.1994Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press.
[31] Lee, J. H.2015Turbulent boundary layer flow with a step change from smooth to rough surface. Intl J. Heat Fluid Flow54, 39-54.10.1016/j.ijheatfluidflow.2015.05.001 · doi:10.1016/j.ijheatfluidflow.2015.05.001
[32] Lin, C. L. & Glendening, J. W.2002Large eddy simulation of an inhomogeneous atmospheric boundary layer under neutral conditions. J. Atmos. Sci.59, 2479-2497.10.1175/1520-0469(2002)059<2479:LESOAI>2.0.CO;2 · doi:10.1175/1520-0469(2002)059<2479:LESOAI>2.0.CO;2
[33] Loureiro, J. B. R., Sousa, F. B. C. C., Zotin, J. L. Z. & Freire, A. P. S.2010The distribution of wall shear stress downstream of a change in roughness. Intl J. Heat Fluid Flow31, 785-793.10.1016/j.ijheatfluidflow.2010.06.006 · doi:10.1016/j.ijheatfluidflow.2010.06.006
[34] Miller, N. E. & Stoll, R.2013Surface heterogeneity effects on regional-scale fluxes in the stable boundary layer: aerodynamic roughness length transitions. Boundary-Layer Meteorol.149, 277-301.10.1007/s10546-013-9839-5 · doi:10.1007/s10546-013-9839-5
[35] Miyake, M.1965 Transformation of the atmospheric boundary layer over inhomogeneous surfaces. Tech. Rep., Washington University Department of Atmospheric Sciences.
[36] Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P.1998Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys.143, 90-124.10.1006/jcph.1998.5962 · Zbl 0932.76054 · doi:10.1006/jcph.1998.5962
[37] Mulhearn, P. J.1978A wind-tunnel boundary-layer study of the effects of a surface roughness change: rough to smooth. Boundary-Layer Meteorol.15, 3-30.10.1007/BF00165503 · doi:10.1007/BF00165503
[38] Munro, D. S. & Oke, T. R.1975Aerodynamic boundary-layer adjustment over a crop in neutral stability. Boundary-Layer Meteorol.9, 53-61.10.1007/BF00232253 · doi:10.1007/BF00232253
[39] Munters, W., Meneveau, C. & Meyers, J.2016Turbulent inflow precursor method with time-varying direction for large-eddy simulations and applications to wind farms. Boundary-Layer Meteorol.159 (2), 305-328.10.1007/s10546-016-0127-z · doi:10.1007/s10546-016-0127-z
[40] Nickels, T. B.2004Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech.521, 217-239.10.1017/S0022112004001788 · Zbl 1068.76040 · doi:10.1017/S0022112004001788
[41] Panofsky, H. A. & Townsend, A. A.1964Change of terrain roughness and the wind profile. Q. J. R. Meteorol. Soc.90, 147-155.10.1002/qj.49709038404 · doi:10.1002/qj.49709038404
[42] Pendergrass, W. & Arya, S. P. S.1984Dispersion in neutral boundary layer over a step change in surface roughness: I. Mean flow and turbulence structure. Atmos. Environ.18, 1267-1279.10.1016/0004-6981(84)90037-4 · doi:10.1016/0004-6981(84)90037-4
[43] Perot, J. B.1993An analysis of the fractional step method. J. Comput. Phys.108, 51-58.10.1006/jcph.1993.1162 · Zbl 0778.76064 · doi:10.1006/jcph.1993.1162
[44] Pope, S. B.2000Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[45] Rao, K. S., Wyngaard, J. C. & Coté, O. R.1974The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness. J. Atmos. Sci.31, 738-746.10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2 · doi:10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2
[46] Saito, N. & Pullin, D. I.2014Large eddy simulation of smooth – rough – smooth transitions in turbulent channel flows. Intl J. Heat Mass Transfer78, 707-720.10.1016/j.ijheatmasstransfer.2014.06.088 · doi:10.1016/j.ijheatmasstransfer.2014.06.088
[47] Savelyev, S. A. & Taylor, P. A.2005Internal boundary layers: I. Height formulae for neutral and diabatic flows. Boundary-Layer Meteorol.115, 1-25.10.1007/s10546-004-2122-z · doi:10.1007/s10546-004-2122-z
[48] Scotti, A.2006Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids18, 031701.10.1063/1.2183806 · doi:10.1063/1.2183806
[49] Silva-Lopes, A., Palma, J. M. L. M. & Piomelli, U.2015On the determination of effective aerodynamic roughness of surfaces with vegetation patches. Boundary-Layer Meteorol.156, 113-130.10.1007/s10546-015-0022-z · doi:10.1007/s10546-015-0022-z
[50] Spalart, P. R., Moser, R. D. & Rogers, M. M.1991Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys.96, 297-324.10.1016/0021-9991(91)90238-G · Zbl 0726.76074 · doi:10.1016/0021-9991(91)90238-G
[51] Stevens, R. J., Graham, J. & Meneveau, C.2014A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms. Renew. Energy68, 46-50.10.1016/j.renene.2014.01.024 · doi:10.1016/j.renene.2014.01.024
[52] Stoll, R. & Porté-Agel, F.2006Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res.42, W01409.10.1029/2005WR003989 · doi:10.1029/2005WR003989
[53] Verstappen, R. W. C. P. & Veldman, A. E. P.2003Symmetry-preserving discretization of turbulent flow. J. Comput. Phys.187, 343-368.10.1016/S0021-9991(03)00126-8 · Zbl 1062.76542 · doi:10.1016/S0021-9991(03)00126-8
[54] Win, A. T., Mochizuki, S. & Kameda, T.2010Response of the fully developed pipe flow to rough wall disturbances (mean velocity field). J. Fluid Sci. Technol.5, 340-350.10.1299/jfst.5.340 · doi:10.1299/jfst.5.340
[55] Yang, X. I. A. & Meneveau, C.2017Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools. Phil. Trans. R. Soc. A375, 20160098. · Zbl 1404.76146
[56] Yuan, J. & Piomelli, U.2014Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids26, 015113.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.