×

Smoothness of correlation functions in Liouville conformal field theory. (English) Zbl 1459.81100

Liouville conformal field theory (LCFT) was introduced by Polyakov in 1981 and has attracted extensive interest in physics and mathematics communities. It is an important example of two-dimensional conformal field theory which provides invaluable insight on the role of conformal metrics in two dimensions.
While the original work utilizes the path integral formulation, it is also possible to study LCFT with the conformal bootstrap method. However, for LCFT, the equivalence of the path integral and conformal bootstrap approaches is far from obvious, and how to unify them remains an open problem. Along this direction, the present paper provides a rigorous proof of the smoothness of the correlation functions in LCFT. This result serves as the first step towards proving that the correlation functions of LCFT satisfy the higher Ward identities and the higher Belavin-Polyakov-Zamolodchikov equations, which is a prediction of the conformal bootstrap approach.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
60D05 Geometric probability and stochastic geometry
81T08 Constructive quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
81V17 Gravitational interaction in quantum theory
83C45 Quantization of the gravitational field

References:

[1] Baverez, G.: Modular bootstrap agrees with path integral in the large moduli limit. arXiv:1805.09766 · Zbl 1428.81126
[2] Baverez, G., Wong, M.D.: Fusion asymptotics for Liouville correlation functions. arXiv:1807.10207
[3] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] Benoit, L., Saint-Aubin, Y.: Degenerate conformal field theories and explicit expressions for some null vectors. Phys. Lett. B 215(3), 517-522 (1988) · Zbl 0957.17509 · doi:10.1016/0370-2693(88)91352-4
[5] Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 27, 1-12 (2017) · Zbl 1365.60035
[6] David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342, 869-907 (2016) · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[7] David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Renormalizability of Liouville Quantum Gravity at the Seiberg bound. Electron. J. Probab. 22, paper no. 93, 26 pp (2017) · Zbl 1386.81131
[8] Gawedzki, K.: Lectures on conformal field theory. In: Quantum fields and strings: a course for mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), pp. 727-805. Amer. Math. Soc., Providence (1999) · Zbl 1170.81430
[9] Guillarmou, C., Rhodes, R., Vargas, V.: Polyakov’s formulation of \[2d2\] d bosonic string theory (2017). arXiv:1607.08467 [math-ph] · Zbl 1514.81216
[10] Huang, Y.: Path integral approach to analytic continuation of Liouville theory: the pencil region. arXiv:1809.08650
[11] Huang, Y., Rhodes, R., Vargas, V.: Liouville Quantum Gravity on the unit disk. Ann. Inst. H. Poincare Probab. Stat. 54(3), 1694-1730 (2018) · Zbl 1404.60071 · doi:10.1214/17-AIHP852
[12] Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105-150 (1985) · Zbl 0596.60041
[13] Kupiainen, A., Rhodes, R., Vargas, V.: Local Conformal Structure of Liouville Quantum Gravity. Commun. Math. Phys. (2018). https://doi.org/10.1007/s00220-018-3260-3 · Zbl 1480.83053
[14] Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ Formula. arXiv:1707.08785 · Zbl 1391.83114
[15] Kupiainen, A., Rhodes, R., Vargas, V.: The DOZZ formula from the path integral. High Energy Phys. 2018, 94 (2018) · Zbl 1391.83114 · doi:10.1007/JHEP05(2018)094
[16] Kupiainen, A.: Constructive Liouville Conformal Field Theory. arXiv:1611.05243 · Zbl 1446.81036
[17] Nakayama, Y.: Liouville Field Theory—A decade after the revolution. Int. J. Mod. Phys. A 19, 2771 (2004) · Zbl 1080.81056 · doi:10.1142/S0217751X04019500
[18] Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. 103B, 207 (1981) · doi:10.1016/0370-2693(81)90743-7
[19] Remy, G.: The Fyodorov-Bouchaud formula and Liouville conformal field theory. arXiv:1710.06897 · Zbl 1465.60032
[20] Remy, G., Zhu, T.: The distribution of Gaussian multiplicative chaos on the unit interval. arXiv:1804.02942 · Zbl 1462.60063
[21] Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[22] Rhodes, R., Vargas, V.: Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity. arXiv:1602.07323 · Zbl 1386.60139
[23] Ribault, S.: Conformal field theory on the plane. arXiv:1406.4290 · Zbl 1272.81178
[24] Takhtajan, L., Teo, L.: Quantum Liouville Theory in the background field formalism I. Compact Riemann surfaces. Commun. Math. Phys. 268, 135 (2006) · Zbl 1114.32007 · doi:10.1007/s00220-006-0091-4
[25] Takhtajan, L., Zograf, P.: Hyperbolic 2-spheres with conical singularities, accessory parameters and Kahler metrics on \[{{\cal{M}}}_{0, n}\] M0,n. Trans. Am. Math. Soc. 355(5), 1857 (2002) · Zbl 1075.32006 · doi:10.1090/S0002-9947-02-03243-9
[26] Teschner, J.: Liouville theory revisited. Class. Quant. Grav. 18, R153-R222 (2001) · Zbl 1022.81047 · doi:10.1088/0264-9381/18/23/201
[27] Vargas, V.: Lecture notes on Liouville theory and the DOZZ formula. arXiv:1712.00829
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.