×

Stress-energy in Liouville conformal field theory. (English) Zbl 1446.81036

Summary: We construct the stress-energy tensor correlation functions in probabilistic Liouville conformal field theory (LCFT) on the two-dimensional sphere \({\mathbb{S}}^2\) by studying the variation of the LCFT correlation functions with respect to a smooth Riemannian metric on \({\mathbb{S}}^2\). In particular we derive conformal Ward identities for these correlation functions. This forms the basis for the construction of a representation of the Virasoro algebra on the canonical Hilbert space of the LCFT. In A. Kupiainen et al. [Commun. Math. Phys. 371, No. 3, 1005-1069 (2019; Zbl 1480.83053)] the conformal Ward identities were derived for one and two stress-energy tensor insertions using a different definition of the stress-energy tensor and Gaussian integration by parts. By defining the stress-energy correlation functions as functional derivatives of the LCFT correlation functions and using the smoothness of the LCFT correlation functions proven in J. Oikarinen [Ann. Henri Poincaré 20, No. 7, 2377-2406 (2019; Zbl 1459.81100)] allows us to control an arbitrary number of stress-energy tensor insertions needed for representation theory.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B68 Virasoro and related algebras
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems

References:

[1] Alvarez, O., Theory of strings with boundary, Nucl. Phys. B, 216, 125-184 (1983) · doi:10.1016/0550-3213(83)90490-X
[2] Astala, K.; Iwaniec, T.; Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (2009), Princeton: Princeton University Press, Princeton · Zbl 1182.30001
[3] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] Berestycki, N., An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab., 27, 1-12 (2017) · Zbl 1365.60035
[5] David, F.; Kupiainen, A.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., 342, 869-907 (2016) · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[6] Duplantier, B.; Rhodes, R.; Sheffield, S.; Vargas, V., Renormalization of critical Gaussian multiplicative chaos and KPZ relation, Commun. Math. Phys., 330, 283-330 (2014) · Zbl 1297.60033 · doi:10.1007/s00220-014-2000-6
[7] Dubédat, J., SLE and the free field: partition functions and couplings, J. Am. Math. Soc., 22, 4, 995-1054 (2009) · Zbl 1204.60079 · doi:10.1090/S0894-0347-09-00636-5
[8] Eguchi, T.; Ooguri, H., Conformal and current algebras on a general Riemann surface, Nucl. Phys. B, 282, 308-328 (1987) · doi:10.1016/0550-3213(87)90686-9
[9] Gawedzki, K.: Lectures on conformal field theory. In: Quantum Fields and Strings: A Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), pp. 727-805. American Mathematical Society, Providence (1999) · Zbl 1170.81430
[10] Guillarmou, C.; Rhodes, R.; Vargas, V., Polyakov’s formulation of \(2d\) bosonic string theory, Publ. Math. IHES, 130, 111-185 (2019) · Zbl 1514.81216 · doi:10.1007/s10240-019-00109-6
[11] Jost, J., Riemannian Geometry and Geometric Analysis (2011), Berlin: Springer, Berlin · Zbl 1227.53001
[12] Kahane, J-P, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, 9, 2, 105-150 (1985) · Zbl 0596.60041
[13] Kupiainen, A.; Rhodes, R.; Vargas, V., Local conformal structure of Liouville quantum gravity, Commun. Math. Phys., 371, 1005-1069 (2019) · Zbl 1480.83053 · doi:10.1007/s00220-018-3260-3
[14] Kupiainen, A.; Rhodes, R.; Vargas, V., Integrability of Liouville theory: proof of the DOZZ formula, Ann. Math., 191, 1, 81-166 (2020) · Zbl 1432.81055 · doi:10.4007/annals.2020.191.1.2
[15] Kupiainen, A., Oikarinen, J.: in preparation
[16] Kupiainen, A.: Constructive Liouville conformal field theory. arXiv:1611.05243
[17] Oikarinen, J., Smoothness of correlation functions in Liouville conformal field theory, Ann. Henri Poincaré, 20, 7, 2377-2406 (2019) · Zbl 1459.81100 · doi:10.1007/s00023-019-00789-0
[18] Polyakov, AM, Quantum geometry of bosonic strings, Phys. Lett., 103B, 207 (1981) · doi:10.1016/0370-2693(81)90743-7
[19] Rhodes, R.; Vargas, V., Gaussian multiplicative chaos and applications: a review, Probab. Surv., 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[20] Sarnak, P.; Osgood, B.; Phillips, R., Extremals of determinants of Laplacians, J. Funct. Anal., 20, 148-211 (1988) · Zbl 0653.53022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.