×

Approximation of non-Archimedean Lyapunov exponents and applications over global fields. (English) Zbl 1459.37098

Summary: Let \(K\) be an algebraically closed field of characteristic 0 that is complete with respect to a non-trivial and non-archimedean absolute value. We establish an approximation of the Lyapunov exponent of a rational map \(f\) of \(\mathbb{P}^1\) of degree \(d>1\) defined over \(K\) in terms of the multipliers of periodic points of \(f\) having the formally exact period \(n\), with an explicit error estimate in terms of \(f,n\), and \(d\). As an immediate consequence, we obtain an estimate on the blow-up of the Lyapunov exponent function near a pole in one-dimensional parameter families of rational maps over \(K\).
Combined with an improvement of our former archimedean counterpart, this non-archimedean quantitative approximation of Lyapunov exponents allows us to establish
-
a quantification of Silverman’s and Ingram’s recent comparison between the critical height and any ample height on the dynamical moduli space \(\mathcal{M}_d(\overline{\mathbb{Q}})\) except for the flexible Lattès locus,
-
an improvement of McMullen’s finiteness of the multiplier maps in two aspects: reduction to multipliers of cycles having a given formally exact period, and
-
an explicit computation on the magnitude of the formally exact period of cycles, and a characterization of non-affine isotrivial rational maps defined over a function field \(\mathbb{C}(X)\) of a complex normal projective variety \(X\) in terms of the growth of the degree of the multipliers of cycles.

MSC:

37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems
37P45 Families and moduli spaces in arithmetic and non-Archimedean dynamical systems
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
11S82 Non-Archimedean dynamical systems
26E30 Non-Archimedean analysis

References:

[1] Baker, Matthew, A finiteness theorem for canonical heights attached to rational maps over function fields, J. Reine Angew. Math., 626, 205-233 (2009) · Zbl 1187.37133 · doi:10.1515/CRELLE.2009.008
[2] Bassanelli, Giovanni; Berteloot, Fran\c{c}ois, Bifurcation currents in holomorphic dynamics on \(\mathbb{P}^k\), J. Reine Angew. Math., 608, 201-235 (2007) · Zbl 1136.37025 · doi:10.1515/CRELLE.2007.058
[3] Bombieri, Enrico; Gubler, Walter, Heights in Diophantine geometry, New Mathematical Monographs 4, xvi+652 pp. (2006), Cambridge University Press, Cambridge · Zbl 1115.11034 · doi:10.1017/CBO9780511542879
[4] Benedetto, Robert; Ingram, Patrick; Jones, Rafe; Levy, Alon, Attracting cycles in \(p\)-adic dynamics and height bounds for postcritically finite maps, Duke Math. J., 163, 13, 2325-2356 (2014) · Zbl 1323.37058 · doi:10.1215/00127094-2804674
[5] Baker, Matthew; Rumely, Robert, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs 159, xxxiv+428 pp. (2010), American Mathematical Society, Providence, RI · Zbl 1196.14002 · doi:10.1090/surv/159
[6] Chambert-Loir, Antoine, Mesures et \'{e}quidistribution sur les espaces de Berkovich, J. Reine Angew. Math., 595, 215-235 (2006) · Zbl 1112.14022 · doi:10.1515/CRELLE.2006.049
[7] DeMarco, Laura, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., 326, 1, 43-73 (2003) · Zbl 1032.37029 · doi:10.1007/s00208-002-0404-7
[8] DeMarco, Laura, Bifurcations, intersections, and heights, Algebra Number Theory, 10, 5, 1031-1056 (2016) · Zbl 1391.37076 · doi:10.2140/ant.2016.10.1031
[9] Dujardin, Romain, The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse Math. (6), 22, 3, 445-464 (2013) · Zbl 1314.37032 · doi:10.5802/afst.1378
[10] Dujardin, Romain; Favre, Charles, Distribution of rational maps with a preperiodic critical point, Amer. J. Math., 130, 4, 979-1032 (2008) · Zbl 1246.37071 · doi:10.1353/ajm.0.0009
[11] DeMarco, Laura; Okuyama, Y\^usuke, Discontinuity of a degenerating escape rate, Conform. Geom. Dyn., 22, 33-44 (2018) · Zbl 1406.37039 · doi:10.1090/ecgd/318
[12] Dinh, Tien-Cuong; Sibony, Nessim, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. Holomorphic dynamical systems, Lecture Notes in Math. 1998, 165-294 (2010), Springer, Berlin · Zbl 1218.37055 · doi:10.1007/978-3-642-13171-4\_4
[13] Er\"{e}menko, A. \`E.; Levin, G. M., Estimation of the characteristic exponents of a polynomial, Teor. Funktsi\u{\i} Funktsional. Anal. i Prilozhen.. J. Math. Sci. (New York), 85, 5, 2164-2171 (1997) · doi:10.1007/BF02355764
[14] Favre, Charles, Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu, 19, 4, 1141-1183 (2020) · Zbl 1508.37061 · doi:10.1017/s147474801800035x
[15] Favre, Charles; Gauthier, Thomas, Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, 12, 6, 1471-1487 (2018) · Zbl 1401.37104 · doi:10.2140/ant.2018.12.1471
[16] Favre, Charles; Rivera-Letelier, Juan, \'{E}quidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., 335, 2, 311-361 (2006) · Zbl 1175.11029 · doi:10.1007/s00208-006-0751-x
[17] Favre, Charles; Rivera-Letelier, Juan, Th\'{e}orie ergodique des fractions rationnelles sur un corps ultram\'{e}trique, Proc. Lond. Math. Soc. (3), 100, 1, 116-154 (2010) · Zbl 1254.37064 · doi:10.1112/plms/pdp022
[18] Forn\ae ss, John Erik; Sibony, Nessim, Oka’s inequality for currents and applications, Math. Ann., 301, 3, 399-419 (1995) · Zbl 0832.32010 · doi:10.1007/BF01446636
[19] Fresnel, Jean; van der Put, Marius, Rigid analytic geometry and its applications, Progress in Mathematics 218, xii+296 pp. (2004), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 1096.14014 · doi:10.1007/978-1-4612-0041-3
[20] Gauthier, Thomas, Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 45, 6, 947-984 (2013) (2012) · Zbl 1326.37036 · doi:10.24033/asens.2181
[21] Gauthier, Thomas, Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana Univ. Math. J., 63, 4, 917-937 (2014) · Zbl 1325.37027 · doi:10.1512/iumj.2014.63.5328
[22] Gauthier, Thomas; Okuyama, Y\^usuke; Vigny, Gabriel, Hyperbolic components of rational maps: quantitative equidistribution and counting, Comment. Math. Helv., 94, 2, 347-398 (2019) · Zbl 1431.37041 · doi:10.4171/CMH/462
[23] Gauthier, Thomas; Vigny, Gabriel, Distribution of postcritically finite polynomials II: Speed of convergence, J. Mod. Dyn., 11, 57-98 (2017) · Zbl 1419.37040 · doi:10.3934/jmd.2017004
[24] Hindry, Marc; Silverman, Joseph H., Diophantine geometry, Graduate Texts in Mathematics 201, xiv+558 pp. (2000), Springer-Verlag, New York · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[25] Ingram, Patrick, The critical height is a moduli height, Duke Math. J., 167, 7, 1311-1346 (2018) · Zbl 1395.37068 · doi:10.1215/00127094-2017-0053
[26] Jonsson, Mattias, Sums of Lyapunov exponents for some polynomial maps of \(\mathbf{C}^2\), Ergodic Theory Dynam. Systems, 18, 3, 613-630 (1998) · Zbl 0924.58044 · doi:10.1017/S0143385798108209
[27] Jonsson, Mattias, Dynamics of Berkovich spaces in low dimensions. Berkovich spaces and applications, Lecture Notes in Math. 2119, 205-366 (2015), Springer, Cham · Zbl 1401.37103 · doi:10.1007/978-3-319-11029-5\_6
[28] Klimek, Maciej, Pluripotential theory, London Mathematical Society Monographs. New Series 6, xiv+266 pp. (1991), The Clarendon Press, Oxford University Press, New York · Zbl 0742.31001
[29] Kawaguchi, Shu; Silverman, Joseph H., Nonarchimedean Green functions and dynamics on projective space, Math. Z., 262, 1, 173-197 (2009) · Zbl 1161.32009 · doi:10.1007/s00209-008-0368-8
[30] Lazarsfeld, Robert, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 48, xviii+387 pp. (2004), Springer-Verlag, Berlin · Zbl 1093.14501 · doi:10.1007/978-3-642-18808-4
[31] McMullen, Curt, Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2), 125, 3, 467-493 (1987) · Zbl 0634.30028 · doi:10.2307/1971408
[32] Milnor, John, Geometry and dynamics of quadratic rational maps, Experiment. Math., 2, 1, 37-83 (1993) · Zbl 0922.58062
[33] Ma\~{n}\'{e}, R.; Sad, P.; Sullivan, D., On the dynamics of rational maps, Ann. Sci. \'{E}cole Norm. Sup. (4), 16, 2, 193-217 (1983) · Zbl 0524.58025
[34] Okuyama, Y\^usuke, Repelling periodic points and logarithmic equidistribution in non-archimedean dynamics, Acta Arith., 152, 3, 267-277 (2012) · Zbl 1302.37069 · doi:10.4064/aa152-3-3
[35] Okuyama, Y\^usuke, Adelic equidistribution, characterization of equidistribution, and a general equidistribution theorem in non-Archimedean dynamics, Acta Arith., 161, 2, 101-125 (2013) · Zbl 1302.37070 · doi:10.4064/aa161-2-1
[36] Okuyama, Y\^usuke, Fekete configuration, quantitative equidistribution and wandering critical orbits in non-archimedean dynamics, Math. Z., 273, 3-4, 811-837 (2013) · Zbl 1329.37085 · doi:10.1007/s00209-012-1032-x
[37] Okuyama, Y\^usuke, Quantitative approximations of the Lyapunov exponent of a rational function over valued fields, Math. Z., 280, 3-4, 691-706 (2015) · Zbl 1332.37068 · doi:10.1007/s00209-015-1443-6
[38] Okuyama, Y\^usuke; Stawiska, Ma\l gorzata, Potential theory and a characterization of polynomials in complex dynamics, Conform. Geom. Dyn., 15, 152-159 (2011) · Zbl 1252.37036 · doi:10.1090/S1088-4173-2011-00230-X
[39] Y\^usuke Okuyama and Magorzata Stawiska, On a characterization of polynomials among rational functions in non-archimedean dynamics, Arnold Mathematical Journal, (2020). DOI 10.1007/s40598-020-00145-9 · Zbl 1485.37093
[40] Rivera-Letelier, Juan, Dynamique des fonctions rationnelles sur des corps locaux, Ast\'{e}risque, 287, xv, 147-230 (2003) · Zbl 1140.37336
[41] R. Rumely and S. Winburn, The Lipschitz constant of a nonarchimedean rational function, Arxiv e-prints, December 2015.
[42] Sibony, Nessim, Dynamique des applications rationnelles de \(\mathbf{P}^k\). Dynamique et g\'{e}om\'{e}trie complexes, Lyon, 1997, Panor. Synth\`eses 8, ix-x, xi-xii, 97-185 (1999), Soc. Math. France, Paris · Zbl 1020.37026
[43] Silverman, Joseph H., The space of rational maps on \(\mathbf{P}^1\), Duke Math. J., 94, 1, 41-77 (1998) · Zbl 0966.14031 · doi:10.1215/S0012-7094-98-09404-2
[44] Silverman, Joseph H., The arithmetic of dynamical systems, Graduate Texts in Mathematics 241, x+511 pp. (2007), Springer, New York · Zbl 1130.37001 · doi:10.1007/978-0-387-69904-2
[45] Silverman, Joseph H., Height estimates for equidimensional dominant rational maps, J. Ramanujan Math. Soc., 26, 2, 145-163 (2011) · Zbl 1311.11057
[46] Silverman, Joseph H., Moduli spaces and arithmetic dynamics, CRM Monograph Series 30, viii+140 pp. (2012), American Mathematical Society, Providence, RI · Zbl 1247.37004
[47] Szpiro, L.; Tucker, T. J., Equidistribution and generalized Mahler measures. Number theory, analysis and geometry, 609-638 (2012), Springer, New York · Zbl 1283.37075 · doi:10.1007/978-1-4614-1260-1\_26
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.