×

Fekete configuration, quantitative equidistribution and wandering critical orbits in non-archimedean dynamics. (English) Zbl 1329.37085

Summary: Let \(f\) be a rational function of degree \(d>1\) on the projective line over a possibly non-archimedean algebraically closed field. A well-known process initiated by H. Brolin [Ark. Mat. 6, 103–144 (1965; Zbl 0127.03401)] considers the pullbacks of points under iterates of \(f\), and produces an important equilibrium measure. We define the asymptotic Fekete property of pullbacks of points, which means that they mirror the equilibrium measure appropriately. As application, we obtain an error estimate of equidistribution of pullbacks of points for \(C^1\)-test functions in terms of the proximity of wandering critical orbits to the initial points, and show that the order is \(O(\sqrt{kd^{-k}})\) upto a specific exceptional set of capacity 0 of initial points, which is contained in the set of superattracting periodic points and the omega-limit set of wandering critical points from the Julia set or the presingular domains of \(f\). As an application in arithmetic dynamics, together with a dynamical Diophantine approximation, these estimates recover Favre and Rivera-Letelier’s quantitative equidistribution in a purely local manner [C. Favre and J. Rivera-Letelier, Math. Ann. 335, No. 2, 311–361 (2006; Zbl 1175.11029)].

MSC:

37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems
11G50 Heights
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets

References:

[1] Baker M.: A lower bound for average values of dynamical Green’s functions Math. Res. Lett. 13(2-3), 245-257 (2006) · Zbl 1173.11041
[2] Baker M. H., Rumely R.: Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble), 563, 625-688 (2006) · Zbl 1234.11082 · doi:10.5802/aif.2196
[3] Baker M., Rumely R.: Potential theory and dynamics on the Berkovich projective line, vol. 159 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010) · Zbl 1196.14002
[4] Benedetto R. L.: Non-Archimedean holomorphic maps and the Ahlfors Islands theorem. Am. J. Math. 125(3), 581-622 (2003) · Zbl 1041.30021 · doi:10.1353/ajm.2003.0013
[5] Brelot, M.: Lectures on potential theory, Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. Tata Institute of Fundamental Research Lectures on Mathematics, Tata Institute of Fundamental Research, Bombay (1967) (Second edition, revised and enlarged with the help of S. Ramaswamy.) · Zbl 0098.06903
[6] Brolin H.: Invariant sets under iteration of rational functions. Ark. Mat 6, 103-144 (1965) · Zbl 0127.03401 · doi:10.1007/BF02591353
[7] Chambert-Loir A.: Mesures et équidistribution sur les espaces de Berkovich. J. Reine Angew. Math. 595, 215-235 (2006) · Zbl 1112.14022
[8] DeMarco L.: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. 326(1), 43-73 (2003) · Zbl 1032.37029 · doi:10.1007/s00208-002-0404-7
[9] Drasin D., Okuyama Y.: Equidistribution and Nevanlinna theory. Bull. Lond. Math. Soc. 39(4), 603-613 (2007) · Zbl 1123.37018 · doi:10.1112/blms/bdm054
[10] Erëmenko A. E., Sodin M. L.: Iterations of rational functions and the distribution of the values of Poincaré functions. Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 53, 18-25 (1990) · Zbl 0784.30019
[11] Fatou P.: Sur les équations fonctionnelles. Bull. Soc. Math. France. 48, 33-94 (1920)
[12] Favre C., Jonsson M.: The valuative tree, vol. 1853 of Lecture Notes in Mathematics. Springer, Berlin (2004) · Zbl 1064.14024
[13] Favre, C., Rivera-Letelier, J.: Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335(2), 311-361 (2006) · Zbl 1175.11029 · doi:10.1007/s00208-006-0751-x
[14] Favre C., Rivera-Letelier J.: Théorie ergodique des fractions rationnelles sur un corps ultramétrique. Proc. Lond. Math. Soc. (3) 100(1), 116-154 (2010) · Zbl 1254.37064 · doi:10.1112/plms/pdp022
[15] Fekete, M.: Über den transfiniten Durchmesser ebener Punktmengen. Math. Z. 32(1):108-114, 215-221 (1930) · JFM 56.0090.01
[16] Fekete, M.: Über den transfiniten Durchmesser ebener Punktmengen. Math. Z. 37(1), 635-646 (1933) · Zbl 0007.40204 · doi:10.1007/BF01474605
[17] Freire A., Lopes A., Mañé R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat 14(1), 45-62 (1983) · Zbl 0568.58027 · doi:10.1007/BF02584744
[18] Jonsson M.: Sums of Lyapunov exponents for some polynomial maps of C2. Ergod. Theory Dyn. Syst. 18(3), 613-630 (1998) · Zbl 0924.58044 · doi:10.1017/S0143385798108209
[19] Jonsson, M.: Dynamics on Berkovich spaces in low dimensions, ArXiv e-prints (Jan. 2012) · Zbl 1401.37103
[20] Kawaguchi S., Silverman J. H.: Nonarchimedean Green functions and dynamics on projective space. Math. Z. 262(1), 173-197 (2009) · Zbl 1161.32009 · doi:10.1007/s00209-008-0368-8
[21] Ljubich M. J.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Theory Dyn. Syst. 3(3), 351-385 (1983) · Zbl 0537.58035 · doi:10.1017/S0143385700002030
[22] Mañé R.: On a theorem of Fatou. Bol. Soc. Brasil. Mat. (N.S.) 24(1), 1-11 (1993) · Zbl 0781.30023 · doi:10.1007/BF01231694
[23] Mihalache, N.: Two counterexamples in rational and interval dynamics, ArXiv e-prints (Oct. 2008) · Zbl 1112.14022
[24] Milnor, J.: Dynamics in one complex variable, vol. 160 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, third edition (2006) · Zbl 1085.30002
[25] Okuyama Y., Stawiska M.: Potential theory and a characterization of polynomials in complex dynamics. Conform. Geom. Dyn. 15, 152-159 (2011) · Zbl 1252.37036 · doi:10.1090/S1088-4173-2011-00230-X
[26] Przytycki F., Rivera-Letelier J., Smirnov S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29-63 (2003) · Zbl 1038.37035 · doi:10.1007/s00222-002-0243-x
[27] Rivera-Letelier, J.: Dynamique des fonctions rationnelles sur des corps locaux, Astérisque, 287, xv, 147-230, (2003) Geometric methods in dynamics. II · Zbl 1140.37336
[28] Saff, E. B., Totik, V.: Logarithmic potentials with external fields, vol. 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Berlin (1997) [Appendix B by Thomas Bloom] · Zbl 0881.31001
[29] Silverman J. H.: Integer points, Diophantine approximation, and iteration of rational maps. Duke Math. J. 71(3), 793-829 (1993) · Zbl 0811.11052 · doi:10.1215/S0012-7094-93-07129-3
[30] Silverman, J. H.: The arithmetic of dynamical systems, vol. 241 of Graduate Texts in Mathematics, Springer, New York (2007) · Zbl 1130.37001
[31] Sodin, M.: Value distribution of sequences of rational functions, entire and subharmonic functions, vol. 11 of Adv. Soviet Math., Am. Math. Soc., Providence, RI, pp. 7-20 (1992) · Zbl 0793.30026
[32] Szpiro, L., Tucker, T. J.: Equidistribution and generalized Mahler measures, ArXiv Mathematics e-prints (Oct. 2005) · Zbl 1161.32009
[33] Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, PhD thesis, IRMAR, Institut de Recherche Mathématique de Rennes, available at http://tel.archives-ouvertes.fr/documents/archives0/00/01/09/90/ (2005)
[34] Tsuji, M.: Potential theory in modern function theory. Chelsea Publishing Co., New York (1975) (reprinting of the 1959 original) · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.