×

The Newman-Penrose map and the classical double copy. (English) Zbl 1457.83031

Summary: Gauge-gravity duality is arguably our best hope for understanding quantum gravity. Considerable progress has been made in relating scattering amplitudes in certain gravity theories to those in gauge theories — a correspondence dubbed the double copy. Recently, double copies have also been realized in a classical setting, as maps between exact solutions of gauge theories and gravity. We present here a novel map between a certain class of real, exact solutions of Einstein’s equations and self-dual solutions of the flat-space vacuum Maxwell equations. This map, which we call the Newman-Penrose map, is well-defined even for non-vacuum, non-stationary spacetimes, providing a systematic framework for exploring gravity solutions in the context of the double copy that have not been previously studied in this setting. To illustrate this, we present here the Newman-Penrose map for the Schwarzschild and Kerr black holes, and Kinnersley’s photon rocket.

MSC:

83C57 Black holes
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C45 Quantization of the gravitational field

References:

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[2] Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
[3] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[4] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].
[5] Kawai, H.; Lewellen, DC; Tye, SHH, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B, 269, 1 (1986) · doi:10.1016/0550-3213(86)90362-7
[6] Bjerrum-Bohr, NEJ; Damgaard, PH; Monteiro, R.; O’Connell, D., Algebras for Amplitudes, JHEP, 06, 061 (2012) · Zbl 1397.81135 · doi:10.1007/JHEP06(2012)061
[7] J. Nohle, Color-Kinematics Duality in One-Loop Four-Gluon Amplitudes with Matter, Phys. Rev. D90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].
[8] Boels, RH; Isermann, RS; Monteiro, R.; O’Connell, D., Colour-Kinematics Duality for One-Loop Rational Amplitudes, JHEP, 04, 107 (2013) · doi:10.1007/JHEP04(2013)107
[9] Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops, Phys. Rev. D92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
[10] Du, Y-J; Feng, B.; Fu, C-H, Dual-color decompositions at one-loop level in Yang-Mills theory, JHEP, 06, 157 (2014) · doi:10.1007/JHEP06(2014)157
[11] Oxburgh, S.; White, CD, BCJ duality and the double copy in the soft limit, JHEP, 02, 127 (2013) · Zbl 1342.81719 · doi:10.1007/JHEP02(2013)127
[12] Naculich, SG; Nastase, H.; Schnitzer, HJ, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP, 04, 114 (2013) · Zbl 1342.81606 · doi:10.1007/JHEP04(2013)114
[13] Cheung, C.; Rothstein, IZ; Solon, MP, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett., 121, 251101 (2018) · doi:10.1103/PhysRevLett.121.251101
[14] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Black Hole Binary Dynamics from the Double Copy and Effective Theory, JHEP, 10, 206 (2019) · Zbl 1427.83035 · doi:10.1007/JHEP10(2019)206
[15] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, Phys. Rev. Lett., 122, 201603 (2019) · doi:10.1103/PhysRevLett.122.201603
[16] A.K. Leibovich, N.T. Maia, I.Z. Rothstein and Z. Yang, Second post-Newtonian order radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach, Phys. Rev. D101 (2020) 084058 [arXiv:1912.12546] [INSPIRE].
[17] Tolotti, M.; Weinzierl, S., Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP, 07, 111 (2013) · Zbl 1342.81321 · doi:10.1007/JHEP07(2013)111
[18] Cheung, C.; Remmen, GN, Twofold Symmetries of the Pure Gravity Action, JHEP, 01, 104 (2017) · Zbl 1373.83013 · doi:10.1007/JHEP01(2017)104
[19] Cheung, C.; Remmen, GN, Hidden Simplicity of the Gravity Action, JHEP, 09, 002 (2017) · Zbl 1382.83007 · doi:10.1007/JHEP09(2017)002
[20] Monteiro, R.; O’Connell, D.; White, CD, Black holes and the double copy, JHEP, 12, 056 (2014) · Zbl 1333.83048 · doi:10.1007/JHEP12(2014)056
[21] White, CD, The double copy: gravity from gluons, Contemp. Phys., 59, 109 (2018) · doi:10.1080/00107514.2017.1415725
[22] Du, Y-J; Feng, B.; Fu, C-H, BCJ Relation of Color Scalar Theory and KLT Relation of Gauge Theory, JHEP, 08, 129 (2011) · Zbl 1298.81380 · doi:10.1007/JHEP08(2011)129
[23] Cheung, C.; Shen, C-H; Wen, C., Unifying Relations for Scattering Amplitudes, JHEP, 02, 095 (2018) · Zbl 1387.81264 · doi:10.1007/JHEP02(2018)095
[24] White, CD, Exact solutions for the biadjoint scalar field, Phys. Lett. B, 763, 365 (2016) · Zbl 1370.70053 · doi:10.1016/j.physletb.2016.10.052
[25] P.-J. De Smet and C.D. White, Extended solutions for the biadjoint scalar field, Phys. Lett. B775 (2017) 163 [arXiv:1708.01103] [INSPIRE]. · Zbl 1380.81227
[26] Bahjat-Abbas, N.; Stark-Muchão, R.; White, CD, Biadjoint wires, Phys. Lett. B, 788, 274 (2019) · Zbl 1405.81071 · doi:10.1016/j.physletb.2018.11.026
[27] Kerr, R.; Schild, A., Republication of: A new class of vacuum solutions of the einstein field equations (reprinted), Gen. Rel. Grav., 41, 2485 (2009) · Zbl 1176.83041 · doi:10.1007/s10714-009-0857-z
[28] Carrillo-González, M.; Penco, R.; Trodden, M., The classical double copy in maximally symmetric spacetimes, JHEP, 04, 028 (2018) · Zbl 1390.81624 · doi:10.1007/JHEP04(2018)028
[29] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
[30] Berman, DS; Chacón, E.; Luna, A.; White, CD, The self-dual classical double copy, and the Eguchi-Hanson instanton, JHEP, 01, 107 (2019) · Zbl 1409.83137 · doi:10.1007/JHEP01(2019)107
[31] Eguchi, T.; Hanson, AJ, Asymptotically Flat Selfdual Solutions to Euclidean Gravity, Phys. Lett. B, 74, 249 (1978) · doi:10.1016/0370-2693(78)90566-X
[32] Luna, A.; Monteiro, R.; O’Connell, D.; White, CD, The classical double copy for Taub-NUT spacetime, Phys. Lett. B, 750, 272 (2015) · Zbl 1364.83005 · doi:10.1016/j.physletb.2015.09.021
[33] Bahjat-Abbas, N.; Luna, A.; White, CD, The Kerr-Schild double copy in curved spacetime, JHEP, 12, 004 (2017) · Zbl 1383.83104 · doi:10.1007/JHEP12(2017)004
[34] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE]. · Zbl 1476.83027
[35] Kinnersley, W., Field of an Arbitrarily Accelerating Point Mass, Phys. Rev., 186, 1335 (1969) · doi:10.1103/PhysRev.186.1335
[36] Luna, A.; Monteiro, R.; Nicholson, I.; O’Connell, D.; White, CD, The double copy: Bremsstrahlung and accelerating black holes, JHEP, 06, 023 (2016) · Zbl 1388.83025 · doi:10.1007/JHEP06(2016)023
[37] Bah, I.; Dempsey, R.; Weck, P., Kerr-Schild Double Copy and Complex Worldlines, JHEP, 02, 180 (2020) · Zbl 1435.83070 · doi:10.1007/JHEP02(2020)180
[38] A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and Implications for the Classical Double Copy, Phys. Rev. D94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].
[39] Kim, K.; Lee, K.; Monteiro, R.; Nicholson, I.; Peinador Veiga, D., The Classical Double Copy of a Point Charge, JHEP, 02, 046 (2020) · Zbl 1444.83009 · doi:10.1007/JHEP02(2020)046
[40] H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2003) [DOI] [INSPIRE]. · Zbl 1057.83004
[41] Goldberg, J.; Sachs, R., Republication of: A theorem on petrov types, Gen. Rel. Grav., 41, 433 (2009) · Zbl 1162.83004 · doi:10.1007/s10714-008-0722-5
[42] C. McIntosh et al., Kerr-schild spacetimes revisited, in Conference on Mathematical Relativity, pp. 201-206, Centre for Mathematics and its Applications, Mathematical Sciences Institute (1989). · Zbl 0681.53049
[43] McIntosh, C.; Hickman, M., Single kerr-schild metrics: a double view, Gen. Rel. Grav., 20, 793 (1988) · Zbl 0646.53066 · doi:10.1007/BF00758901
[44] Newman, E.; Penrose, R., An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566 (1962) · Zbl 0108.40905 · doi:10.1063/1.1724257
[45] J. Baez and J. Muniain, Gauge fields, knots and gravity, World Scientific (1994) [INSPIRE]. · Zbl 0843.57001
[46] Plebanski, JF, Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395 (1975) · doi:10.1063/1.522505
[47] Sabharwal, S.; Dalhuisen, JW, Anti-Self-Dual Spacetimes, Gravitational Instantons and Knotted Zeros of the Weyl Tensor, JHEP, 07, 004 (2019) · Zbl 1418.83007 · doi:10.1007/JHEP07(2019)004
[48] Kerr, RP; Wilson, WB, Singularities in the Kerr-Schild metrics, Gen. Rel. Grav., 10, 273 (1979) · Zbl 0426.53029 · doi:10.1007/BF00759485
[49] Chandrasekhar, S., The mathematical theory of black holes (1985), Oxford, U.K.: Clarendon, Oxford, U.K. · Zbl 0912.53053 · doi:10.1119/1.13992
[50] Penrose, R., Twistor algebra, J. Math. Phys., 8, 345 (1967) · Zbl 0163.22602 · doi:10.1063/1.1705200
[51] Cox, D.; Flaherty, EJ, A conventional proof of Kerr’s Theorem, Commun. Math. Phys., 47, 75 (1976) · Zbl 0317.53032 · doi:10.1007/BF01609355
[52] S. Huggett and K. Tod, An introduction to twistor theory, Cambridge University Press (1986) [INSPIRE]. · Zbl 0809.53001
[53] Adamo, TM; Kozameh, CN; Newman, ET, Null Geodesic Congruences, Asymptotically Flat Space-Times and Their Physical Interpretation, Living Rev. Rel., 12, 6 (2009) · Zbl 1215.83002 · doi:10.12942/lrr-2009-6
[54] S.R. Coleman, The magnetic monopole fifty years later, in Les Houches Summer School of Theoretical Physics: Laser-Plasma Interactions, pp. 461-552 (1982) [INSPIRE].
[55] Erbin, H., Janis-Newman algorithm: generating rotating and NUT charged black holes, Universe, 3, 19 (2017) · doi:10.3390/universe3010019
[56] Arkani-Hamed, N.; Huang, Y-t; O’Connell, D., Kerr black holes as elementary particles, JHEP, 01, 046 (2020) · Zbl 1434.83049 · doi:10.1007/JHEP01(2020)046
[57] J. Figueroa-O’Farrill, Electromagnetic duality for children, https://www.maths.ed.ac.uk/ jmf/Teaching/Lectures/EDC.pdf (1998).
[58] S. Carlip, Aberration and the speed of gravity, Phys. Lett. A267 (2000) 81 [gr-qc/9909087] [INSPIRE]. · Zbl 0948.83023
[59] Bonnor, WM, The Photon rocket, Class. Quant. Grav., 11, 2007 (1994) · doi:10.1088/0264-9381/11/8/008
[60] Newman, ET; Unti, TWJ, A Class of Null Flat-Space Coordinate Systems, J. Math. Phys., 4, 1467 (1963) · Zbl 0118.22503 · doi:10.1063/1.1703927
[61] J.D. Jackson, Classical Electrodynamics, Wiley (1998) [INSPIRE]. · Zbl 0997.78500
[62] Peskin, ME; Schroeder, DV, An Introduction to quantum field theory (1995), Reading, U.S.A.: Addison-Wesley, Reading, U.S.A.
[63] Moynihan, N., Kerr-Newman from Minimal Coupling, JHEP, 01, 014 (2020) · Zbl 1434.83071 · doi:10.1007/JHEP01(2020)014
[64] Y.-T. Huang, U. Kol and D. O’Connell, Double copy of electric-magnetic duality, Phys. Rev. D102 (2020) 046005 [arXiv:1911.06318] [INSPIRE].
[65] Alawadhi, R.; Berman, DS; Spence, B.; Peinador Veiga, D., S-duality and the double copy, JHEP, 03, 059 (2020) · Zbl 1435.81225 · doi:10.1007/JHEP03(2020)059
[66] E.T. Newman, Asymptotic twistor theory and the Kerr theorem, Class. Quant. Grav.23 (2006) 3385 [gr-qc/0512079] [INSPIRE]. · Zbl 1106.83016
[67] Bahjat-Abbas, N.; Stark-Muchão, R.; White, CD, Monopoles, shockwaves and the classical double copy, JHEP, 04, 102 (2020) · Zbl 1436.83014 · doi:10.1007/JHEP04(2020)102
[68] Anastasiou, A.; Borsten, L.; Duff, MJ; Hughes, LJ; Nagy, S., Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett., 113, 231606 (2014) · doi:10.1103/PhysRevLett.113.231606
[69] Luna, A.; Nagy, S.; White, C., The convolutional double copy: a case study with a point, JHEP, 09, 062 (2020) · Zbl 1454.83162 · doi:10.1007/JHEP09(2020)062
[70] Alfonsi, L.; White, CD; Wikeley, S., Topology and Wilson lines: global aspects of the double copy, JHEP, 07, 091 (2020) · Zbl 1451.83006 · doi:10.1007/JHEP07(2020)091
[71] Tod, KP, Self-dual Kerr-Schild metrics and null Maxwell fields, J. Math. Phys., 23, 1147 (1982) · Zbl 0482.53023 · doi:10.1063/1.525482
[72] Cox, D., Kerr’s theorem and the kerr-schild congruences, J. Math. Phys., 18, 1188 (1977) · Zbl 0402.53013 · doi:10.1063/1.523388
[73] R. Monteiro, I. Nicholson and D. O’Connell, Spinor-helicity and the algebraic classification of higher-dimensional spacetimes, Class. Quant. Grav.36 (2019) 065006 [arXiv:1809.03906] [INSPIRE]. · Zbl 1476.83145
[74] Debney, GC; Kerr, RP; Schild, A., Solutions of the Einstein and Einstein-Maxwell Equations, J. Math. Phys., 10, 1842 (1969) · doi:10.1063/1.1664769
[75] Monteiro, R.; O’Connell, D., The Kinematic Algebra From the Self-Dual Sector, JHEP, 07, 007 (2011) · Zbl 1298.81401 · doi:10.1007/JHEP07(2011)007
[76] Parkes, A., A Cubic action for selfdual Yang-Mills, Phys. Lett. B, 286, 265 (1992) · doi:10.1016/0370-2693(92)91773-3
[77] Newman, ET; Penrose, R., Spin-coefficient formalism, Scholarpedia, 4, 7445 (2009) · doi:10.4249/scholarpedia.7445
[78] Boyer, RH; Lindquist, RW, Maximal analytic extension of the Kerr metric, J. Math. Phys., 8, 265 (1967) · Zbl 0149.23503 · doi:10.1063/1.1705193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.