×

Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. (English) Zbl 1215.83002

Summary: A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in complex Minkowski space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell) field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss) by (Bondi’s) integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum-conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C57 Black holes
83C22 Einstein-Maxwell equations
53Z05 Applications of differential geometry to physics
83C40 Gravitational energy and conservation laws; groups of motions

References:

[1] Adamo, T.M. and Newman, E.T., “The gravitational field of a radiating electromagnetic dipole”, Class. Quantum Grav., 25, 245005, (2008). [DOI], [arXiv:0807.3537]. (Cited on page 62.) · Zbl 1255.83032 · doi:10.1088/0264-9381/25/24/245005
[2] Adamo, T.M. and Newman, E.T., “Asymptotically stationary and static spacetimes and shear free null geodesic congruences”, Class. Quantum Grav., 26, 155003, (2009). [DOI], [arXiv:0906.2409]. (Cited on page 48.) · Zbl 1172.83010 · doi:10.1088/0264-9381/26/15/155003
[3] Adamo, T.M. and Newman, E.T., “Electromagnetically induced gravitational perturbations”, Class. Quantum Grav., 26, 015004, (2009). [DOI], [arXiv:0807.3671]. (Cited on pages 23, 62, and 63.) · Zbl 1157.83010 · doi:10.1088/0264-9381/26/1/015004
[4] Adamo, T.M. and Newman, E.T., “The real meaning of complex Minkowski-space world-lines”, Class. Quantum Grav., 27, 075009, (2010). [DOI], [arXiv:0911.4205]. (Cited on pages 9 and 25.) · Zbl 1187.83007 · doi:10.1088/0264-9381/27/7/075009
[5] Arnowitt, R., Deser, S. and Misner, C.W., “Energy and the Criteria for Radiation in General Relativity”, Phys. Rev., 118, 1100-1104, (1960). [DOI], [ADS]. (Cited on page 7.) · Zbl 0090.44303 · doi:10.1103/PhysRev.118.1100
[6] Aronson, B. and Newman, E.T., “Coordinate systems associated with asymptotically shear-free null congruences”, J. Math. Phys., 13, 1847-1851, (1972). [DOI]. (Cited on pages 26, 39, 45, and 69.) · Zbl 0258.53023 · doi:10.1063/1.1665919
[7] Bergmann, P.G., “Non-Linear Field Theories”, Phys. Rev., 75, 680-685, (1949). [DOI], [ADS]. (Cited on page 72.) · Zbl 0039.23004 · doi:10.1103/PhysRev.75.680
[8] Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21-52, (1962). [DOI], [ADS]. (Cited on pages 7, 10, 15, and 22.) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[9] Bramson, B., “Do electromagnetic waves harbour gravitational waves?”, Proc. R. Soc. London, Ser. A, 462, 1987-2000, (2006). [DOI]. (Cited on page 62.) · Zbl 1149.83310 · doi:10.1098/rspa.2006.1658
[10] Chruściel, P.T. and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, (Birkhäuser, Basel; Boston, 2004). [Google Books]. (Cited on page 72.) · Zbl 1048.83001
[11] Corvino, J. and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint equations”, J. Differ. Geom., 73, 185-217, (2006). [gr-qc/0301071]. (Cited on page 72.) · Zbl 1122.58016
[12] Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL (accessed 31 July 2009): http://www.livingreviews.org/lrr-2004-1. (Cited on page 15.) · Zbl 1070.83006
[13] Friedrich, H., “On the Existence of <Emphasis Type=”Italic“>n-Geodesically Complete or Future Complete Solutions of Einstein’s Field Equations with Smooth Asymptotic Structure”, Commun. Math. Phys., 107, 587-609, (1986). [DOI]. (Cited on page 72.) · Zbl 0659.53056 · doi:10.1007/BF01205488
[14] Frittelli, S., Kozameh, C.N., Newman, E.T., Rovelli, C. and Tate, R.S., “Fuzzy spacetime from a null-surface version of general relativity”, Class. Quantum Grav., 14, A143-A154, (1997). [DOI], [gr-qc/9603061]. (Cited on page 72.) · Zbl 0867.58084 · doi:10.1088/0264-9381/14/1A/012
[15] Frittelli, S. and Newman, E.T., “Pseudo-Minkowskian coordinates in asymptotically flat space-times”, Phys. Rev. D, 55, 1971-1976, (1997). [DOI], [ADS]. (Cited on page 64.) · doi:10.1103/PhysRevD.55.1971
[16] Gel’fand, I.M., Graev, M.I. and Vilenkin, N.Y., Generalized Functions, Vol. 5: Integral geometry and representation theory, (Academic Press, New York; London, 1966). (Cited on pages 64 and 65.) · Zbl 0144.17202
[17] Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F. and Sudarshan, E.C.G., “Spin-<Emphasis Type=”Italic“>s Spherical Harmonics and S”, J. Math. Phys., 8, 2155-2161, (1967). [DOI]. (Cited on pages 17 and 78.) · Zbl 0155.57402 · doi:10.1063/1.1705135
[18] Goldberg, J.N. and Sachs, R.K., “A Theorem on Petrov Types”, Acta Phys. Pol., 22, 13-23, (1962). Republished as 10.1007/s10714-008-0722-5. (Cited on pages 9, 22, and 24.) · Zbl 0113.44807
[19] Hansen, R.O. and Newman, E.T., “A complex Minkowski space approach to twistors”, Gen. Relativ. Gravit., 6, 361-385, (1975). [DOI]. (Cited on pages 38 and 40.) · Zbl 0357.53012 · doi:10.1007/BF00761970
[20] Hansen, R.O., Newman, E.T., Penrose, R. and Tod, K.P., “The Metric and Curvature Properties of <InlineEquation ID=”IEq518“> <EquationSource Format=”TEX“>\({\mathcal H}\)-Space”, Proc. R. Soc. London, Ser. A, 363, 445-468, (1978). [DOI], [ADS]. (Cited on pages 40 and 41.) · Zbl 0391.53014 · doi:10.1098/rspa.1978.0177
[21] Held, A., Newman, E.T. and Posadas, R., “The Lorentz Group and the Sphere”, J. Math. Phys., 11, 3145-3154, (1970). [DOI]. (Cited on pages 64, 65, 67, and 78.) · Zbl 0202.27401 · doi:10.1063/1.1665105
[22] Hugget, S.A. and Tod, K.P., An Introduction to Twistor Theory, London Mathematical Society Student Texts, 4, (Cambridge University Press, Cambridge; New York, 1994), 2nd edition. [Google Books]. (Cited on page 74.) · Zbl 0809.53001 · doi:10.1017/CBO9780511624018
[23] Ivancovich, J., Kozameh, C.N. and Newman, E.T., “Green’s functions of the edh operators”, J. Math. Phys., 30, 45-52, (1989). [DOI]. (Cited on page 40.) · Zbl 0709.46504 · doi:10.1063/1.528587
[24] Ko, M.; Newman, ET; Tod, KP; Esposito, FP (ed.); Witten, L. (ed.), \({\mathcal H}\)-Space and Null Infinity, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), University of Cincinnati, Ohio, June 14-18, 1976, New York · doi:10.1007/978-1-4684-2343-3_3
[25] Kozameh, C.N. and Newman, E.T., “Electromagnetic dipole radiation fields, shear-free congruences and complex centre of charge world lines”, Class. Quantum Grav., 22, 4667-4678, (2005). [DOI], [gr-qc/0504093]. (Cited on page 32.) · Zbl 1078.83014 · doi:10.1088/0264-9381/22/22/002
[26] Kozameh, C.N. and Newman, E.T., “The large footprints of H-space on asymptotically flat spacetimes”, Class. Quantum Grav., 22, 4659-4665, (2005). [DOI], [gr-qc/0504022]. (Cited on pages 8, 26, 27, 39, and 69.) · Zbl 1078.83003 · doi:10.1088/0264-9381/22/22/001
[27] Kozameh, C.N., Newman, E.T., Santiago-Santiago, J.G. and Silva-Ortigoza, G., “The universal cut function and type II metrics”, Class. Quantum Grav., 24, 1955-1979, (2007). [DOI], [gr-qc/0612004]. (Cited on pages 7, 8, 25, 26, 27, 33, and 50.) · Zbl 1113.83010 · doi:10.1088/0264-9381/24/8/004
[28] Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On the physical meaning of the Robinson-Trautman-Maxwell fields”, Class. Quantum Grav., 23, 6599-6620, (2006). [DOI], [gr-qc/0607074]. (Cited on pages 7, 41, and 47.) · Zbl 1107.83018 · doi:10.1088/0264-9381/23/23/002
[29] Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On extracting physical content from asymptotically flat spacetime metrics”, Class. Quantum Grav., 25, 145001, (2008). [DOI], [arXiv:0802.3314]. (Cited on pages 7, 8, 23, 67, 69, and 79.) · Zbl 1145.83004 · doi:10.1088/0264-9381/25/14/145001
[30] Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press; Addison-Wesley, Oxford; Reading, MA, 1962), 2nd edition. (Cited on pages 59, 60, 63, and 67.) · Zbl 0178.28704
[31] Lewandowski, J. and Nurowski, P., “Algebraically special twisting gravitational fields and CR structures”, Class. Quantum Grav., 7, 309-328, (1990). [DOI]. (Cited on page 76.) · Zbl 0693.53023 · doi:10.1088/0264-9381/7/3/007
[32] Lewandowski, J., Nurowski, P. and Tafel, J., “Einstein’s equations and realizability of CR manifolds”, Class. Quantum Grav., 7, L241-L246, (1990). [DOI]. (Cited on page 76.) · Zbl 0714.53047 · doi:10.1088/0264-9381/7/11/003
[33] Lind, R.W., “Shear-free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism”, Gen. Relativ. Gravit., 5, 25-47, (1974). [DOI]. (Cited on page 47.) · doi:10.1007/BF00758073
[34] Newman, E.T., “Heaven and Its Properties”, Gen. Relativ. Gravit., 7, 107-111, (1976). [DOI]. (Cited on pages 9 and 41.) · doi:10.1007/BF00762018
[35] Newman, E.T., “Maxwell fields and shear-free null geodesic congruences”, Class. Quantum Grav., 21, 3197-3221, (2004). [DOI]. (Cited on pages 32, 33, 35, and 37.) · Zbl 1071.83032 · doi:10.1088/0264-9381/21/13/007
[36] Newman, E.T., “Asymptotic twistor theory and the Kerr theorem”, Class. Quantum Grav., 23, 3385-3392, (2006). [DOI], [gr-qc/0512079]. (Cited on pages 74 and 75.) · Zbl 1106.83016 · doi:10.1088/0264-9381/23/10/009
[37] Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R., “Metric of a Rotating, Charged Mass”, J. Math. Phys., 6, 918-919, (1965). [DOI]. (Cited on pages 9, 45, 57, and 69.) · Zbl 0137.18601 · doi:10.1063/1.1704351
[38] Newman, E.T. and Nurowski, P., “CR structures and asymptotically flat spacetimes”, Class. Quantum Grav., 23, 3123-3127, (2006). [DOI], [gr-qc/0511119]. (Cited on page 76.) · Zbl 1096.83022 · doi:10.1088/0264-9381/23/9/022
[39] Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566-578, (1962). [DOI], [ADS]. (Cited on pages 10, 19, and 20.) · Zbl 0108.40905 · doi:10.1063/1.1724257
[40] Newman, E.T. and Penrose, R., “Note on the Bondi-Metzner-Sachs Group”, J. Math. Phys., 7, 863-870, (1966). [DOI], [ADS]. (Cited on pages 10 and 78.) · doi:10.1063/1.1931221
[41] Newman, E.T. and Penrose, R., “Spin-coefficient formalism”, Scholarpedia, 4(6), 7445, (2009). URL (accessed 30 July 2009): http://www.scholarpedia.org/article/Spin-coefficient_formalism. (Cited on page 19.) · doi:10.4249/scholarpedia.7445
[42] Newman, E.T. and Posadas, R., “Motion and Structure of Singularities in General Relativity”, Phys. Rev., 187, 1784-1791, (1969). [DOI], [ADS]. (Cited on page 47.) · Zbl 0186.28702 · doi:10.1103/PhysRev.187.1784
[43] Newman, E.T. and Silva-Ortigoza, G., “Tensorial spin-s harmonics”, Class. Quantum Grav., 23, 497-509, (2006). [DOI], [gr-qc/0508028]. (Cited on pages 10, 78, 79, and 80.) · Zbl 1087.83049 · doi:10.1088/0264-9381/23/2/014
[44] Newman, ET; Tod, KP; Held, A. (ed.), Asymptotically flat space-times, 1-36 (1980), New York
[45] Newman, E.T. and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math. Phys., 3, 891-901, (1962). [DOI], [ADS]. (Cited on page 20.) · Zbl 0113.21006 · doi:10.1063/1.1724303
[46] Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66-68, (1963). [DOI], [ADS]. (Cited on pages 7 and 15.) · doi:10.1103/PhysRevLett.10.66
[47] Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R. Soc. London, Ser. A, 284, 159-203, (1965). [DOI], [ADS]. (Cited on pages 7 and 15.) · Zbl 0129.41202 · doi:10.1098/rspa.1965.0058
[48] Penrose, R., “Twistor Algebra”, J. Math. Phys., 8, 345-366, (1967). [DOI]. (Cited on page 74.) · Zbl 0163.22602 · doi:10.1063/1.1705200
[49] Penrose, R.; Barut, AO (ed.), Relativistic symmetry groups, Proceedings of the NATO Advanced Study Institute, Istanbul, Turkey, Dordrecht; Boston · Zbl 0281.22021 · doi:10.1007/978-94-010-2144-9_1
[50] Penrose, R. and Rindler, W., Spinors and space-time, Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1984). [Google Books]. (Cited on pages 11, 23, and 24.) · Zbl 0538.53024 · doi:10.1017/CBO9780511564048
[51] Penrose, R. and Rindler, W., Spinors and space-time, Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1986). [Google Books]. (Cited on pages 27, 74, and 75.) · Zbl 0591.53002 · doi:10.1017/CBO9780511524486
[52] Petrov, A.Z., “The Classification of Spaces Defining Gravitational Fields”, Gen. Relativ. Gravit., 32, 1665-1685, (2000). [DOI]. (Cited on page 24.) · Zbl 0972.83007 · doi:10.1023/A:1001910908054
[53] Pirani, F.A.E., “Invariant Formulation of Gravitational Radiation Theory”, Phys. Rev., 105(3), 1089-1099, (1957). [DOI]. (Cited on page 24.) · Zbl 0077.41901 · doi:10.1103/PhysRev.105.1089
[54] Robinson, I., “Null Electromagnetic Fields”, J. Math. Phys., 2, 290-291, (1961). [DOI]. (Cited on page 7.) · doi:10.1063/1.1703712
[55] Robinson, I. and Trautman, A., “Some spherical gravitational waves in general relativity”, Proc. R. Soc. London, Ser. A, 265, 463-473, (1962). [DOI]. (Cited on pages 41 and 46.) · Zbl 0099.42902 · doi:10.1098/rspa.1962.0036
[56] Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103-126, (1962). [DOI], [ADS]. (Cited on pages 7, 10, and 18.) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[57] Sachs, RK; DeWitt, CM (ed.); DeWitt, B. (ed.), Gravitational radiation, 523-562 (1964), New York
[58] Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19, 549-554, (1978). [DOI], [ADS]. (Cited on page 7.) · doi:10.1063/1.523698
[59] Szabados, L.B., “Quasi-Local Energy-Momentum and Angular Momentum in General Relativity”, Living Rev. Relativity, 12, lrr-2009-4, (2009). URL (accessed 31 July 2009): http://www.livingreviews.org/lrr-2009-4. (Cited on pages 23, 44, 45, and 55.) · Zbl 1215.83010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.