×

Optimal local approximation spaces for component-based static condensation procedures. (English) Zbl 1457.65216

Summary: In this paper we introduce local approximation spaces for component-based static condensation (sc) procedures that are optimal in the sense of Kolmogorov. To facilitate simulations for large structures such as aircraft or ships, it is crucial to decrease the number of degrees of freedom on the interfaces, or “ports,” in order to reduce the size of the statically condensed system. To derive optimal port spaces we consider a (compact) transfer operator that acts on the space of harmonic extensions on a two-component system and maps the traces on the ports that lie on the boundary of these components to the trace of the shared port. Solving the eigenproblem for the composition of the transfer operator and its adjoint yields the optimal space. For a related work in the context of the generalized finite element method, we refer the reader to [I. Babuska and R. Lipton, Multiscale Model. Simul. 9, No. 1, 373–406 (2011; Zbl 1229.65195)]. We further introduce a spectral greedy algorithm to generalize the procedure to the parameter-dependent setting and to construct a quasi-optimal parameter-independent port space. Moreover, it is shown that, given a certain tolerance and an upper bound for the ports in the system, the spectral greedy constructs a port space that yields an sc approximation error on a system of arbitrary configuration which is smaller than this tolerance for all parameters in a rich train set. We present our approach for isotropic linear elasticity, although the idea may be readily applied to any linear coercive problem. Numerical experiments demonstrate the very rapid and exponential convergence both of the eigenvalues and of the sc approximation based on spectral modes for nonseparable and irregular geometries such as an I-beam with an internal crack.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
15A18 Eigenvalues, singular values, and eigenvectors
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

Citations:

Zbl 1229.65195

Software:

libMesh; Eigen; redbKIT
Full Text: DOI

References:

[1] A. Abdulle and P. Henning, {\it A reduced basis localized orthogonal decomposition}, J. Comput. Phys., 295 (2015), pp. 379-401. · Zbl 1349.65609
[2] I. Babuška, X. Huang, and R. Lipton, {\it Machine computation using the exponentially convergent multiscale spectral generalized finite element method}, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 493-515. · Zbl 1320.74097
[3] I. Babuška and R. Lipton, {\it Optimal local approximation spaces for generalized finite element methods with application to multiscale problems}, Multiscale Model. Simul., 9 (2011), pp. 373-406, http://dx.doi.org/10.1137/100791051 doi:10.1137/100791051. · Zbl 1229.65195
[4] M. Bampton and R. Craig, {\it Coupling of substructures for dynamic analyses}, AIAA J., 6 (1968), pp. 1313-1319. · Zbl 0159.56202
[5] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, {\it Convergence rates for greedy algorithms in reduced basis methods}, SIAM J. Math. Anal., 43 (2011), pp. 1457-1472, http://dx.doi.org/10.1137/100795772 doi:10.1137/100795772. · Zbl 1229.65193
[6] F. Bourquin, {\it Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm}, RAIRO Modél. Math. Anal. Numér., 26 (1992), pp. 385-423. · Zbl 0765.65100
[7] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, {\it A priori convergence of the greedy algorithm for the parametrized reduced basis method}, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 595-603. · Zbl 1272.65084
[8] M. Dauge, E. Faou, and Z. Yosibash, {\it Plates and Shells: Asymptotic Expansions and Hierarchic Models}, Encyclopedia Comput. Mech., John Wiley, New York, 2004.
[9] R. DeVore, G. Petrova, and P. Wojtaszczyk, {\it Greedy algorithms for reduced bases in Banach spaces}, Constr. Approx., 37 (2013), pp. 455-466. · Zbl 1276.41021
[10] Y. Efendiev, J. Galvis, and T. Y. Hou, {\it Generalized multiscale finite element methods (GMsFEM)}, J. Comput. Phys., 251 (2013), pp. 116-135. · Zbl 1349.65617
[11] J. L. Eftang and A. T. Patera, {\it Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation}, Internat. J. Numer. Methods Engrg., 96 (2013), pp. 269-302. · Zbl 1352.65495
[12] J. L. Eftang and A. T. Patera, {\it A port-reduced static condensation reduced basis element method for large component-synthesized structures: Approximation and {\it a posteriori} error estimation}, Adv. Modeling Simul. Engrg. Sci., 1 (2014), pp. 1-49.
[13] Eigen, {\it A C\textup++ Linear Algebra Library}, .
[14] B. Haasdonk, {\it Convergence rates of the POD-greedy method}, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 859-873. · Zbl 1277.65074
[15] B. Haasdonk, {\it Reduced basis methods for parametrized PDEs: A tutorial introduction for stationary and instationary problems}, in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., SIAM, Philadelphia, to appear.
[16] B. Haasdonk and M. Ohlberger, {\it Reduced basis method for finite volume approximations of parametrized linear evolution equations}, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 277-302. · Zbl 1388.76177
[17] J. S. Hesthaven, G. Rozza, and B. Stamm, {\it Certified Reduced Basis Methods for Parametrized Partial Differential Equations}, SpringerBriefs in Mathematics, BCAM SpringerBriefs, Springer; BCAM Basque Center for Applied Mathematics, Bilbao, 2016. · Zbl 1329.65203
[18] U. Hetmaniuk and A. Klawonn, {\it Error estimates for a two-dimensional special finite element method based on component mode synthesis}, Electron. Trans. Numer. Anal., 41 (2014), pp. 109-132. · Zbl 1296.65147
[19] U. Hetmaniuk and R. B. Lehoucq, {\it A special finite element method based on component mode synthesis}, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 401-420. · Zbl 1190.65173
[20] P. Holzwarth and P. Eberhard, {\it Interface reduction for CMS methods and alternative model order reduction}, IFAC-PapersOnLine, 48 (2015), pp. 254-259.
[21] W. C. Hurty, {\it Dynamic analysis of structural systems using component modes}, AIAA J., 3 (1965), pp. 678-685.
[22] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, {\it A static condensation reduced basis element method: Approximation and a posteriori error estimation}, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 213-251. · Zbl 1276.65082
[23] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, {\it A static condensation reduced basis element method: Complex problems}, Comput. Methods Appl. Mech. Engrg., 259 (2013), pp. 197-216. · Zbl 1286.65160
[24] L. Iapichino, A. Quarteroni, and G. Rozza, {\it A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks}, Comput. Methods Appl. Mech. Engrg., 221/222 (2012), pp. 63-82. · Zbl 1253.76139
[25] L. Iapichino, A. Quarteroni, and G. Rozza, {\it Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries}, Comput. Math. Appl., 71 (2016), pp. 408-430. · Zbl 1443.65340
[26] H. Jakobsson, F. Bengzon, and M. G. Larson, {\it Adaptive component mode synthesis in linear elasticity}, Internat. J. Numer. Methods Engrg., 86 (2011), pp. 829-844. · Zbl 1235.74288
[27] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, {\it libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations}, Engineering with Computers, 22 (2006), pp. 237-254.
[28] D. J. Knezevic and J. W. Peterson, {\it A high-performance parallel implementation of the certified reduced basis method}, Comput. Methods Appl. Mech. Eng., 200 (2011), pp. 1455-1466. · Zbl 1228.76109
[29] A. Kolmogoroff, {\it Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse}, Ann. of Math. (2), 37 (1936), pp. 107-110. · Zbl 0013.34903
[30] J.-L. Lions and E. Magenes, {\it Non-homogeneous Boundary Value Problems and Applications \textup1}, Springer-Verlag, Berlin, 1972. · Zbl 0223.35039
[31] Y. Maday and E. M. Rø nquist, {\it A reduced-basis element method}, J. Sci. Comput., 17 (2002), pp. 447-459. · Zbl 1014.65119
[32] Y. Maday and E. M. Rø nquist, {\it The reduced basis element method: Application to a thermal fin problem}, SIAM J. Sci. Comput., 26 (2004), pp. 240-258, http://dx.doi.org/10.1137/S1064827502419932 doi:10.1137/ S1064827502419932. · Zbl 1077.65120
[33] I. Maier and B. Haasdonk, {\it A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems}, Appl. Numer. Math., 78 (2014), pp. 31-48. · Zbl 1282.65166
[34] I. Martini, G. Rozza, and B. Haasdonk, {\it Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system}, Adv. Comput. Math., 41 (2015), pp. 1131-1157. · Zbl 1336.76021
[35] N. C. Nguyen, {\it A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales}, J. Comput. Phys., 227 (2008), pp. 9807-9822. · Zbl 1155.65391
[36] E. C. Pestel and F. A. Leckie, {\it Matrix Methods in Elastomechanics}, McGraw-Hill, New York, 1963.
[37] A. Pinkus, {\it \(n\)-Widths in Approximation Theory}, Ergeb. Math. Grenzgeb. (3) 7, Springer-Verlag, Berlin, 1985. · Zbl 0551.41001
[38] A. Quarteroni, A. Manzoni, and F. Negri, {\it Reduced Basis Methods for Partial Differential Equations. An Introduction}, Unitext 92, Springer, Cham, Switzerland, 2016. · Zbl 1337.65113
[39] A. Quarteroni and A. Valli, {\it Domain Decomposition Methods for Partial Differential Equations}, reprint, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2005.
[40] F. Schindler, B. Haasdonk, S. Kaulmann, and M. Ohlberger, {\it The localized reduced basis multiscale method}, in Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, 2012, Slovak University of Technology in Bratislava, Publishing House of STU, 2012, pp. 393-403. · Zbl 1278.65172
[41] K. Smetana, {\it A new certification framework for the port reduced static condensation reduced basis element method}, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 352-383. · Zbl 1425.65179
[42] K. Smetana and A. T. Patera, {\it Fully localized a posteriori error estimation for the port reduced static condensation reduced basis element method}, in preparation, 2016.
[43] M. S. Troitsky, {\it Stiffened Plates: Bending, Stability, and Vibrations}, Elsevier Scientific, Amsterdam, 1976. · Zbl 0367.73069
[44] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera, {\it A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations}, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2003-3847, 2003. · Zbl 1024.65104
[45] W. Weaver, Jr., S. P. Timoshenko, and D. H. Young, {\it Vibration Problems in Engineering}, John Wiley & Sons, New York, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.