×

A new certification framework for the port reduced static condensation reduced basis element method. (English) Zbl 1425.65179

Summary: In this paper we introduce a new certification framework for the port-reduced static condensation reduced basis element (PR-SCRBE) method, which has been developed for the simulation of large component based applications such as bridges or acoustic waveguides. In an offline computational stage we construct a library of interoperable parametrized reference components; in the subsequent online stage we instantiate and connect the components at the interfaces/ports to form a system of components. To compute a “truth” finite element approximation of the (say) coercive elliptic partial differential equation on the component based system we use a domain decomposition approach. For an efficient simulation we employ two different types of model reduction – a reduced basis (RB) approximation within the interior of the component [D. B. P. Huynh et al., ESAIM, Math. Model. Numer. Anal. 47, No. 1, 213–251 (2013; Zbl 1276.65082); Comput. Methods Appl. Mech. Eng. 259, 197–216 (2013; Zbl 1286.65160)] and empirical port reduction [J. L. Eftang and A. T. Patera, Int. J. Numer. Methods Eng. 96, No. 5, 269–302 (2013; Zbl 1352.65495)] on the ports where the components connect. We demonstrate the well-posedness of the PR-SCRBE approximation and introduce a new certification framework. To assess the quality of the port reduction we use conservative fluxes. We adapt the standard estimators from RB methods to the SCRBE setting to derive an a posteriori error estimator for the RB-error contribution. In order to combine the a posteriori estimators for both error contributions and derive a rigorous a posteriori error estimator for PR-SCRBE we adapt techniques from multi-scale methods and component mode synthesis. Finally, we prove that the effectivity of the derived estimator can be bounded. We provide numerical experiments for heat conduction and linear elasticity to show that the derived a posteriori error estimator provides an effective estimator. Moreover we demonstrate the applicability of the introduced certification framework by analyzing the computational (online) costs.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

SLEPc; libMesh
Full Text: DOI

References:

[1] Hurty, W. C., Dynamic analysis of structural systems using component modes, AIAA J., 3, 4, 678-685, (1965)
[2] Bampton, M.; Craig, R., Coupling of substructures for dynamic analyses, AIAA J., 6, 7, 1313-1319, (1968) · Zbl 0159.56202
[3] Bourquin, F., Component mode synthesis and eigenvalues of second order operators: discretization and algorithm, RAIRO Modél. Math. Anal. Numér., 26, 3, 385-423, (1992) · Zbl 0765.65100
[4] Hetmaniuk, U.; Lehoucq, R. B., A special finite element method based on component mode synthesis, ESAIM Math. Model. Numer. Anal., 44, 3, 401-420, (2010) · Zbl 1190.65173
[5] Jakobsson, H.; Bengzon, F.; Larson, M. G., Adaptive component mode synthesis in linear elasticity, Internat. J. Numer. Methods Engrg., 86, 7, 829-844, (2011) · Zbl 1235.74288
[6] Maday, Y.; Rønquist, E. M., The reduced basis element method: application to a thermal fin problem, SIAM J. Sci. Comput., 26, 1, 240-258, (2004), (electronic) · Zbl 1077.65120
[7] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics, Arch. Comput. Methods Eng., 15, 3, 229-275, (2008) · Zbl 1304.65251
[8] DeVore, R.; Petrova, G.; Wojtaszczyk, P., Greedy algorithms for reduced bases in Banach spaces, Constr. Approx., 37, 3, 455-466, (2013) · Zbl 1276.41021
[9] Iapichino, L.; Quarteroni, A.; Rozza, G., A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks, Comput. Methods Appl. Mech. Engrg., 221-222, 63-82, (2012) · Zbl 1253.76139
[10] Maier, I.; Haasdonk, B., A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems, Appl. Numer. Math., 78, 31-48, (2014) · Zbl 1282.65166
[11] Nguyen, N. C., A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales, J. Comput. Phys., 227, 23, 9807-9822, (2008) · Zbl 1155.65391
[12] Schindler, F.; Haasdonk, B.; Kaulmann, S.; Ohlberger, M., The localized reduced basis multiscale method, (Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, 2012, Slovak University of Technology in Bratislava, (2012), Publishing House of STU), 393-403 · Zbl 1278.65172
[13] Efendiev, Y.; Galvis, J.; Hou, T. Y., Generalized multiscale finite element methods (gmsfem), J. Comput. Phys., 251, 116-135, (2013) · Zbl 1349.65617
[14] Huynh, D. B.P.; Knezevic, D. J.; Patera, A. T., A static condensation reduced basis element method: approximation and a posteriori error estimation, ESAIM Math. Model. Numer. Anal., 47, 1, 213-251, (2013) · Zbl 1276.65082
[15] Eftang, J. L.; Patera, A. T., Port reduction in parametrized component static condensation: approximation and a posteriori error estimation, Internat. J. Numer. Methods Engrg., 96, 5, 269-302, (2013) · Zbl 1352.65495
[16] Vallaghé, S.; Patera, A. T., The static condensation reduced basis element method for a mixed-mean conjugate heat exchanger model, SIAM J. Sci. Comput., 36, 3, B294-B320, (2014) · Zbl 1298.80016
[17] Huynh, D. B.P.; Knezevic, D. J.; Patera, A. T., A static condensation reduced basis element method: complex problems, Comput. Methods Appl. Mech. Engrg., 259, 197-216, (2013) · Zbl 1286.65160
[18] Eftang, J. L.; Patera, A. T., A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and a posteriori error estimation, Adv. Model. Simul. Eng. Sci., 1, 3, (2014)
[19] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 2, 467-488, (2000) · Zbl 0969.65104
[20] Larson, M. G.; Målqvist, A., Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems, Comput. Methods Appl. Mech. Engrg., 196, 21-24, 2313-2324, (2007) · Zbl 1173.74431
[21] Henning, P.; Ohlberger, M.; Schweizer, B., An adaptive multiscale finite element method, Multiscale Model. Simul., 12, 3, 1078-1107, (2014) · Zbl 1312.65191
[22] Målqvist, A.; Peterseim, D., Localization of elliptic multiscale problems, Math. Comp., 83, 290, 2583-2603, (2014) · Zbl 1301.65123
[23] Ohlberger, M.; Schindler, F., A-posteriori error estimates for the localized reduced basis multi-scale method, (Finite Volumes for Complex Applications VII—Methods and Theoretical Aspects, (2014), Springer International Publishing), 421-429 · Zbl 1305.65220
[24] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris Ser. I, 339, 667-672, (2004) · Zbl 1061.65118
[25] Quarteroni, A.; Valli, A., (Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, (1999), The Clarendon Press, Oxford University Press New York), Oxford Science Publications · Zbl 0931.65118
[26] K. Veroy, C. Prud’homme, D.V. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, vol. 3847, 2003.; K. Veroy, C. Prud’homme, D.V. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, vol. 3847, 2003.
[27] Ern, A.; Guermond, J., (Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, (2004), Springer-Verlag New York) · Zbl 1059.65103
[28] Babuška, I.; Miller, A., The post-processing approach in the finite element method—part 1: calculation of displacements, stresses and other higher derivatives of the displacements, Internat. J. Numer. Methods Engrg., 20, 6, 1085-1109, (1984) · Zbl 0535.73052
[29] Gresho, P. M.; Lee, R. L.; Sani, R. L.; Maslanik, M. K.; Eaton, B. E., The consistent Galerkin FEM for computing derived boundary quantities in thermal and or fluids problems, Internat. J. Numer. Methods Fluids, 7, 4, 371-394, (1987) · Zbl 0629.76095
[30] Toselli, A.; Widlund, O., (Domain Decomposition Methods—Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, (2005), Springer-Verlag Berlin) · Zbl 1069.65138
[31] Mathew, T. P.A., (Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 61, (2008), Springer) · Zbl 1147.65101
[32] Vallaghé, S.; Huynh, D. B.P.; Knezevic, D. J.; Patera, A. T., Component-based reduced basis for eigenproblems, tech. rep. 61, (2013), MechE MIT, USA, URL: http://augustine.mit.edu/methodology/papers/VHKP_CS_July2013.pdf
[33] Strang, G.; Fix, G., An analysis of the finite element method, (2008), Wellesley-Cambridge Press Wellesley, MA · Zbl 0278.65116
[34] Repin, S. I., Computable majorants of constants in the Poincaré and Friedrichs inequalities, J. Math. Sci., 186, 2, 1-15, (2012) · Zbl 1278.35167
[35] Payne, L. E.; Weinberger, H. F., An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 1, 286-292, (1960) · Zbl 0099.08402
[36] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications 1, (1972), Springer-Verlag Berlin · Zbl 0227.35001
[37] Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., Libmesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 3-4, 237-254, (2006)
[38] Knezevic, D. J.; Peterson, J. W., A high-performance parallel implementation of the certified reduced basis method, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1455-1466, (2011) · Zbl 1228.76109
[39] Hernandez, V.; Roman, J. E.; Vidal, V., Slepc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31, 3, 351-362, (2005) · Zbl 1136.65315
[40] Adams, R. A., (Sobolev Spaces, Pure and Applied Mathematics, vol. 65, (1975), Academic Press New York-London) · Zbl 0314.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.