×

A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. (English) Zbl 1024.65104

Summary: We present two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are
(i) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space \(W_N\) spanned by solutions of the governing partial differential equation at \(N\) selected points in parameter space;
(ii) a posteriori error estimation – relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and
(iii) off-line/on-line computational procedures – methods which decouple the generation and projection stages of the approximation process.
This component is ideally suited – considering the operation count of the online stage – for the repeated and rapid evaluation required in the context of parameter estimation, design, optimization, and real-time control. The second component is a framework for distributed simulations. This framework comprises a library providing the necessary abstractions/concepts for distributed simulations and a small set of tools – namely simtex and simlab – allowing an easy manipulation of those simulations. While the library is the backbone of the framework and is therefore general, the various interfaces answer specific needs. We describe both components and present how they interact.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
68M14 Distributed systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
68M15 Reliability, testing and fault tolerance of networks and computer systems
65Y05 Parallel numerical computation

Software:

Feel++

References:

[1] M.A. Akgun , J.H. Garcelon and R.T. Haftka , Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas . Int. J. Numer. Methods Engrg. 50 ( 2001 ) 1587 - 1606 . Zbl 0971.74076 · Zbl 0971.74076 · doi:10.1002/nme.87
[2] E. Allgower and K. Georg , Simplicial and continuation methods for approximating fixed-points and solutions to systems of equations . SIAM Rev. 22 ( 1980 ) 28 - 85 . Zbl 0432.65027 · Zbl 0432.65027 · doi:10.1137/1022003
[3] B.O. Almroth , P. Stern and F.A. Brogan , Automatic choice of global shape functions in structural analysis . AIAA Journal 16 ( 1978 ) 525 - 528 .
[4] A. Barrett and G. Reddien , On the reduced basis method . Z. Angew. Math. Mech. 75 ( 1995 ) 543 - 549 . Zbl 0832.65047 · Zbl 0832.65047 · doi:10.1002/zamm.19950750709
[5] T.F. Chan and W.L. Wan , Analysis of projection methods for solving linear systems with multiple right-hand sides . SIAM J. Sci. Comput. 18 ( 1997 ) 1698 - 1721 . Zbl 0888.65033 · Zbl 0888.65033 · doi:10.1137/S1064827594273067
[6] A.G. Evans , J.W. Hutchinson , N.A. Fleck , M.F. Ashby and H.N.G. Wadley , The topological design of multifunctional cellular metals . Prog. Mater. Sci. 46 ( 2001 ) 309 - 327 .
[7] C. Farhat , L. Crivelli and F.X. Roux , Extending substructure based iterative solvers to multiple load and repeated analyses . Comput. Methods Appl. Mech. Engrg. 117 ( 1994 ) 195 - 209 . Zbl 0851.73059 · Zbl 0851.73059 · doi:10.1016/0045-7825(94)90083-3
[8] J.P. Fink and W.C. Rheinboldt , On the error behavior of the reduced basis technique for nonlinear finite element approximations . Z. Angew. Math. Mech. 63 ( 1983 ) 21 - 28 . Zbl 0533.73071 · Zbl 0533.73071 · doi:10.1002/zamm.19830630105
[9] L. Machiels , J. Peraire and A.T. Patera , A posteriori finite element output bounds for the incompressible Navier-Stokes equations; Application to a natural convection problem . J. Comput. Phys. 172 ( 2001 ) 401 - 425 . Zbl 1002.76069 · Zbl 1002.76069 · doi:10.1006/jcph.2001.6769
[10] Y. Maday , L. Machiels , A.T. Patera and D.V. Rovas , Blackbox reduced-basis output bound methods for shape optimization , in Proceedings \(12^{th}\) International Domain Decomposition Conference, Chiba, Japan ( 2000 ) 429 - 436 .
[11] Y. Maday , A.T. Patera and J. Peraire , A general formulation for a posteriori bounds for output functionals of partial differential equations; Application to the eigenvalue problem . C. R. Acad. Sci. Paris Sér. I Math. 328 ( 1999 ) 823 - 828 . Zbl 0933.65129 · Zbl 0933.65129 · doi:10.1016/S0764-4442(99)80279-1
[12] Y. Maday , A.T. Patera and G. Turinici , Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations . C. R. Acad. Sci. Paris Sér. I Math. 335 ( 2002 ) 1 - 6 . Zbl 1009.65066 · Zbl 1009.65066 · doi:10.1016/S1631-073X(02)02466-4
[13] A.K. Noor and J.M. Peters , Reduced basis technique for nonlinear analysis of structures . AIAA Journal 18 ( 1980 ) 455 - 462 .
[14] A.T. Patera and E.M. Rønquist , A general output bound result: Application to discretization and iteration error estimation and control . Math. Models Methods Appl. Sci. 11 ( 2001 ) 685 - 712 . Zbl 1012.65110 · Zbl 1012.65110 · doi:10.1142/S0218202501001057
[15] A.T. Patera and E.M. Rønquist , A general output bound result: Application to discretization and iteration error estimation and control . Math. Models Methods Appl. Sci. ( 2000 ). MIT FML Report 98 - 12 -1. Zbl 1012.65110 · Zbl 1012.65110 · doi:10.1142/S0218202501001057
[16] J.S. Peterson , The reduced basis method for incompressible viscous flow calculations . SIAM J. Sci. Stat. Comput. 10 ( 1989 ) 777 - 786 . Zbl 0672.76034 · Zbl 0672.76034 · doi:10.1137/0910047
[17] T.A. Porsching , Estimation of the error in the reduced basis method solution of nonlinear equations . Math. Comp. 45 ( 1985 ) 487 - 496 . Zbl 0586.65040 · Zbl 0586.65040 · doi:10.2307/2008138
[18] C. Prud’homme , A Framework for Reliable Real-Time Web-Based Distributed Simulations . MIT (to appear).
[19] C. Prud’homme , D. Rovas , K. Veroy , Y. Maday , A.T. Patera and G. Turinici , Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods . J. Fluids Engrg. 124 ( 2002 ) 70 - 80 .
[20] W.C. Rheinboldt , Numerical analysis of continuation methods for nonlinear structural problems . Comput. Structures 13 ( 1981 ) 103 - 113 . Zbl 0465.65030 · Zbl 0465.65030 · doi:10.1016/0045-7949(81)90114-0
[21] W.C. Rheinboldt , On the theory and error estimation of the reduced basis method for multi-parameter problems . Nonlinear Anal. 21 ( 1993 ) 849 - 858 . Zbl 0802.65068 · Zbl 0802.65068 · doi:10.1016/0362-546X(93)90050-3
[22] D. Rovas , Reduced-Basis Output Bound Methods for Partial Differential Equations . Ph.D. thesis, MIT (in progress). · Zbl 1101.65099
[23] K. Veroy , Reduced Basis Methods Applied to Problems in Elasticity: Analysis and Applications . Ph.D. thesis, MIT (in progress).
[24] N. Wicks and J. W. Hutchinson , Optimal truss plates . Internat. J. Solids Structures 38 ( 2001 ) 5165 - 5183 . Zbl 0995.74054 · Zbl 0995.74054 · doi:10.1016/S0020-7683(00)00315-2
[25] E.L. Yip , A note on the stability of solving a rank-\(p\) modification of a linear system by the Sherman-Morrison-Woodbury formula . SIAM J. Sci. Stat. Comput. 7 ( 1986 ) 507 - 513 . Zbl 0628.65020 · Zbl 0628.65020 · doi:10.1137/0907034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.