×

KAM theorem for a Hamiltonian system with sublinear growth frequencies at infinity. (English) Zbl 1454.37070

Summary: We prove an infinite-dimensional KAM theorem for a Hamiltonian system with sublinear growth frequencies at infinity. The main purpose is to present a new and simple method to study the dynamics of such Hamiltonian. We will outline the main difficulty due to sublinear growth frequencies and then present the method to overcome this problem. We apply this theorem to a fractional nonlinear Schrödinger equation on the torus \(\mathbb{T}\), thus proving existence and stability of quasi-periodic solutions.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35B10 Periodic solutions to PDEs

References:

[1] Bambusi, D., On long time stability in Hamiltonian perturbations of non-resonant linear PDEs, Nonlinearity, 12, 823-850 (1999) · Zbl 0989.37073 · doi:10.1088/0951-7715/12/4/305
[2] Bambusi, D.; Berti, M., A Birkhoff-Lewis type theorem for some Hamiltonian PDEs, SIAM J. Math. Anal., 37, 83-102 (2005) · Zbl 1105.37045 · doi:10.1137/S0036141003436107
[3] Baldi, P.; Berti, M.; Haus, E.; Montalto, R., Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214, 739-911 (2018) · Zbl 1445.76017 · doi:10.1007/s00222-018-0812-2
[4] Berti, M.; Biasco, L.; Procesi, M., KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Ec. Norm. Super., 46, 299-371 (2013)
[5] Bourgain, J., Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. Math., 148, 363-439 (1998) · Zbl 0928.35161 · doi:10.2307/121001
[6] Bourgain, J., Nonlinear Schrödinger Equations (1999), Providence: American Mathematical Society, Providence · Zbl 1384.35115
[7] Chierchia, L.; You, J., KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Commun. Math. Phys., 211, 498-525 (2000) · Zbl 0956.37054 · doi:10.1007/s002200050824
[8] Craig, W.; Sulem, C., Numerical simulation of gravity waves, J. Comput. Phys., 108, 1, 73-83 (1993) · Zbl 0778.76072 · doi:10.1006/jcph.1993.1164
[9] Craig, W.; Wayne, CE, Newton’s method and periodic solutions of nonlinear wave equations, Commun. Pure. Appl. Math., 46, 1409-1498 (1993) · Zbl 0794.35104 · doi:10.1002/cpa.3160461102
[10] Craig, W.; Worfolk, PA, An integrable normal form for water waves in infnite depth, Phys. D, 84, 513-531 (1995) · Zbl 1194.76025 · doi:10.1016/0167-2789(95)00067-E
[11] Duclos, P.; Lev, O.; Šťovíček, P., On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum, J. Stat. Phys., 130, 169-193 (2008) · Zbl 1134.81023 · doi:10.1007/s10955-007-9419-5
[12] Eliasson, LH; Grébert, B.; Kuksin, SB, KAM for the nonlinear beam equation, Geom. Funct. Anal., 26, 1588-1715 (2016) · Zbl 1370.35214 · doi:10.1007/s00039-016-0390-7
[13] Eliasson, LH; Kuksin, SB, KAM for the non-linear Schröinger equation, Ann. Math., 172, 371-435 (2010) · Zbl 1201.35177 · doi:10.4007/annals.2010.172.371
[14] Eliasson, LH; Kuksin, SB, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Commun. Math. Phys., 286, 1, 125-135 (2009) · Zbl 1176.35141 · doi:10.1007/s00220-008-0683-2
[15] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect., A 142, 6, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[16] Grébert, B.; Thomann, L., KAM for the quantum harmonic oscillator, Commun. Math. Phys., 307, 383-427 (2011) · Zbl 1250.81033 · doi:10.1007/s00220-011-1327-5
[17] Geng, J.; Xu, X.; You, J., An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., 226, 6, 5361-5402 (2011) · Zbl 1213.37104 · doi:10.1016/j.aim.2011.01.013
[18] Geng, J.; You, J., A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Commun. Math. Phys, 262, 343-372 (2006) · Zbl 1103.37047 · doi:10.1007/s00220-005-1497-0
[19] Ionescu, A.; Pusateri, F., Nonlinear fractional Schröinger equations in one dimension, J. Funct. Anal., 266, 139-176 (2014) · Zbl 1304.35749 · doi:10.1016/j.jfa.2013.08.027
[20] Kappeler, T.; Liang, Z., A KAM theorem for the defocusing NLS equation with periodic boundary conditions, J. Differ. Eqs., 252, 4068-4113 (2012) · Zbl 1234.35248 · doi:10.1016/j.jde.2011.11.028
[21] Kuksin, SB, Nearly Integrable Infinite-Dimensional Hamiltonian Systems (1993), Berlin: Springer, Berlin · Zbl 0784.58028
[22] Kuksin, SB, A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Phys., 10, 1-64 (1998) · Zbl 0908.47066 · doi:10.1142/S0129055X98000021
[23] Laskin, N., Fractional Schrödinger eqaution, Phys. Rev. E, 66, 561-569 (2002) · doi:10.1103/PhysRevE.66.056108
[24] Liu, J.; Yuan, X., A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307, 3, 629-673 (2011) · Zbl 1247.37082 · doi:10.1007/s00220-011-1353-3
[25] Pöschel, J., A KAM theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 23, 119-148 (1996) · Zbl 0870.34060
[26] Pöschel, J., On the construction of almost periodic solutions for a nonlinear Schrödinger equations, Ergod. Theory Dyn. Syst., 22, 1537-1549 (2002) · Zbl 1020.37044 · doi:10.1017/S0143385702001086
[27] Procesi, M.; Xu, X., Quasi-Töplitz functions in KAM theorem, SIAM J. Math. Anal., 45, 2148-2181 (2013) · Zbl 1304.37056 · doi:10.1137/110833014
[28] Wayne, CE, Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory, Commun. Math. Phys., 127, 479-528 (1990) · Zbl 0708.35087 · doi:10.1007/BF02104499
[29] Wu, J.; Xu, X., A KAM theorem for some partial differential equations in one dimension, Proc. Am. Math. Soc., 144, 5, 2149-2160 (2016) · Zbl 1417.37257 · doi:10.1090/proc/12875
[30] Xu, X.: Quasi-periodic solutions for fractional nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 10.1007/s10884-017-9630-2 · Zbl 1456.37080
[31] Yuan, X.: KAM theorem with normal frequencies of finite limit-points for some shallow water equations (2018). arXiv:1809.05671
[32] Zakharov, VE, Stability of periodic waves of finite amplitude on the surface of deep fluid, J. Appl. Mech. Tech. Phys., 2, 190-194 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.