×

A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. (English) Zbl 1103.37047

Summary: We give a KAM theorem for a class of infinite-dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher-dimensional spaces with periodic boundary conditions to construct linearly stable quasi-periodic solutions and its local Birkhoff normal form. The applications to the higher-dimensional beam equations and the higher-dimensional Schrödinger equations with nonlocal smooth nonlinearity are given in this paper, too.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35Q72 Other PDE from mechanics (MSC2000)
35Q55 NLS equations (nonlinear Schrödinger equations)
35L75 Higher-order nonlinear hyperbolic equations
Full Text: DOI

References:

[1] Bambusi, Commun. Math. Phys., 234, 253 (2003) · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[2] Bambusi, SIAM J. Math. Anal., 37, 83 (2005) · Zbl 1105.37045 · doi:10.1137/S0036141003436107
[3] Bourgain, Ann. Math., 148, 363 (1998) · Zbl 0928.35161 · doi:10.2307/121001
[4] Bourgain, Geom. Funct. Anal., 5, 629 (1995) · Zbl 0834.35083 · doi:10.1007/BF01902055
[5] Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE., International Mathematics Research Notices, 1994, pp. 475-497 · Zbl 0817.35102
[6] Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, 158. Princeton, NJ: Princeton University Press, 2005 · Zbl 1137.35001
[7] Bourgain, J.: Nonlinear Schrödinger equations. Park City Series5. Providence, RI: American Mathematical Society, 1999 · Zbl 0952.35127
[8] Bourgain, J. Anal. Math., 80, 1 (2000) · Zbl 0964.35143 · doi:10.1007/BF02791532
[9] Craig, Pure. Appl. Math., 46, 1409 (1993) · Zbl 0794.35104
[10] Craig, Physica D, 84, 513 (1995) · Zbl 0883.35092 · doi:10.1016/0167-2789(95)00067-E
[11] Eliasson, Ann. Sc. Norm. Sup. Pisa, 15, 115 (1988) · Zbl 0685.58024
[12] Geng, J.Math. Anal. Appl., 277, 104 (2003) · Zbl 1017.35110 · doi:10.1016/S0022-247X(02)00505-X
[13] Geng, J. Diff. Eqs., 209, 1 (2005) · Zbl 1064.35186 · doi:10.1016/j.jde.2004.09.013
[14] Kuksin, Funct. Anal. Appl., 21, 192 (1987) · Zbl 0716.34083
[15] Kuksin, S.B.: Nearly integrable infinite dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Berlin: Springer, 1993 · Zbl 0784.58028
[16] Kuksin, Ann. Math., 143, 149 (1996) · Zbl 0847.35130 · doi:10.2307/2118656
[17] Pöschel, Comment. Math. Helvetici, 71, 269 (1996) · Zbl 0866.35013
[18] Pöschel, Ann. Sc. Norm. Sup. Pisa CI. Sci., 23, 119 (1996) · Zbl 0870.34060
[19] Pöschel, Erg. Th. Dynam. Syst., 22, 1537 (2002) · Zbl 1020.37044 · doi:10.1017/S0143385702001086
[20] Wayne, Commun. Math. Phys., 127, 479 (1990) · Zbl 0708.35087 · doi:10.1007/BF02104499
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.