×

Time quasi-periodic gravity water waves in finite depth. (English) Zbl 1445.76017

The authors consider the domain \(\mathcal{D}_{\eta}=\{(x,y)\in \mathbb{T} \times \mathbb{R}:-h<y<\eta (t,x)\}\), with \(\mathbb{T}=\mathbb{R}/2\pi \mathbb{Z}\) and where \(y=\eta (t,x)\) is the free upper surface. This domain represents a bi-dimensional ocean with finite depth whose water evolves under the action of pure gravity. The authors consider the system \[ \begin{aligned} &\Delta \Phi =0\text{ in }\mathcal{D}_{\eta},\\ &\partial_{t}\Phi +\frac{1}{2}| \nabla \Phi |^{2}+g\eta =0\text{ at }y=\eta (t,x),\\ &\partial_{y}\Phi =0\text{ at }y=-h,\\ &\partial_{t}\eta =\partial_{y}\Phi -\partial_{x}\eta \text{ at }y=\eta (t,x). \end{aligned} \] They prove the existence and the linear stability of Cantor families of small-amplitude time quasi-periodic standing water wave solutions to this problem. They observe that this problem can be written in an equivalent way as \(\partial_{t}\eta =G(\eta,h)\psi\), \(\partial_{t}\psi =-g\eta -\frac{\psi_{x}^{2}}{2}+\frac{1}{2(1+\eta_{x}^{2})} (G(\eta,h)\psi +\eta_{x}\psi_{x})^{2}\), where \(G(\eta,h)\) is the Dirichlet-Neumann operator defined as \[ G(\eta,h)\psi =-(\Phi_{y}-\eta_{x}\Phi_{x})\mid_{y=\eta (t,x)}. \] Introducing the Hamiltonian \[ H(\eta,\psi)=\frac{1}{2}\int_{\mathbb{T}}\psi G(\eta,h)\psi dx+\frac{g}{2}\int_{\mathbb{T}}\eta^{2}dx, \] the authors also observe that the last system can be written as \[ \begin{aligned} &\partial_{t}\eta =\nabla_{\psi}H(\eta,\psi),\\ &\partial_{t}\psi =-\nabla_{\eta}H(\eta,\psi),\\ &\partial_{t}u=J\nabla_{u}H(u), \end{aligned} \] with \(u=\left(\begin{smallmatrix} \eta \\ \psi \end{smallmatrix}\right)\) and \(J=\left(\begin{smallmatrix} 0 & \mathrm{Id} \\ -\mathrm{Id} & 0 \end{smallmatrix}\right)\). The authors change the scale of the depth \(h\) to \(\mathsf{h}\).
The main result of the paper proves that for every choice of the tangential sites \(\mathbb{S}^{+}\subset \mathbb{N}\setminus \{0\}\), there exists \( \overline{s}>\frac{| \mathbb{S}^{+}| +1}{2}\), \( \varepsilon_{0}\in (0,1)\) such that for every vector \(\overrightarrow{a} =(a_{j})_{j\in \mathbb{S}^{+}}\), with \(a_{j}>0\) for all \(j\in \mathbb{S}^{+}\) and \(| \overrightarrow{a}| \leq \varepsilon_{0}\), there exists a Cantor-like set \(\mathcal{G}\subset \lbrack \mathsf{h}_{1},\mathsf{h}_{2}]\) with asymptotically full measure as \(\overrightarrow{a}\rightarrow 0\), that is \(\lim_{\overrightarrow{a}\rightarrow 0}| \mathcal{G} | =\mathsf{h}_{2}-\mathsf{h}_{1}\), such that, for any \(\mathsf{h} \in \mathcal{G}\), the gravity water waves system has a time quasi-periodic solution \(u(\widetilde{\omega}t,x)=(\eta (\widetilde{\omega}t,x),\psi (\widetilde{\omega}t,x))\), with Sobolev regularity \((\eta,\psi)\in H^{\overline{s}}(\mathbb{T}^{\nu}\times \mathbb{T},\mathbb{R}^{2})\), with a Diophantine frequency vector \(\widetilde{\omega}=(\widetilde{\omega}_{j})_{j\in \mathbb{S}^{+}}\in \mathbb{R}^{\nu}\) depending on \(\mathsf{h}\) and \(\overrightarrow{a}\), of the form \[ \begin{aligned} &\eta (\widetilde{\omega} t,x)=\sum_{j\in \mathbb{S}^{+}}a_{j}\cos (\widetilde{\omega}_{j}t)\cos (jx)+r_{1}(\widetilde{\omega}_{j}t),\\ &\psi (\widetilde{\omega} t,x)=-\sum_{j\in \mathbb{S}^{+}}\frac{a_{j}}{\widetilde{\omega}_{j}(\mathsf{h})}\sin (\widetilde{\omega}_{j}t)\cos (jx)+r_{2}(\widetilde{\omega}_{j}t), \end{aligned} \] with \(\widetilde{\omega}(\mathsf{h},\overrightarrow{a})\rightarrow \widetilde{\omega}(\mathsf{h})=(\omega_{j}(\mathsf{h}))_{j\in \mathbb{S}^{+}}\) as \(\overrightarrow{a}\rightarrow 0\), and the functions \(r_{1}(\widetilde{\omega}_{j}t)\), \(r_{1}(\widetilde{\omega}_{j}t)\) are \( o(| \overrightarrow{a}|)\)-small in \(H^{\overline{s}}(\mathbb{T}^{\nu}\times \mathbb{T},\mathbb{R})\). The solution \((\eta(\widetilde{\omega}t,x),\psi(\widetilde{\omega}t,x))\) is even in \(x\), \(\eta\) is even in \(t\) and \(\psi \) is odd in \(t\). The authors then prove that these quasi-periodic solutions are linearly stable, that is for all \(s\) belonging to a suitable interval \([s_{1},s_{2}]\), for any initial datum \( y(0)\in \mathbb{R}^{\nu}\), \(w(0)\in H_{x}^{s-1/4}\times H_{x}^{s+1/4}\), the solutions \(y(t)\), \(w(t)\) of the system \[ \begin{aligned} &\dot{\phi}=K_{20}(\widetilde{\omega}t)[y]+K_{11}^{T}(\widetilde{\omega}t)[w],\\ &\dot{y}=0,\\ &\dot{w}=JK_{02}(\widetilde{\omega}t)[w]+JK_{11}^{T}(\widetilde{\omega}t)[y]\end{aligned} \] satisfy \(y(t)=y(0)\) and \[ \| w(t)\|_{H_{x}^{s-1/4}\times H_{x}^{s+1/4}}\leq C(\| w(0)\|_{H_{x}^{s-1/4}\times H_{x}^{s+1/4}}+|y(0)|) \] for every \(t\in \mathbb{R}\). Here \(K_{20}\), \(K_{11}\) and \(K_{02}\) are operators associated to the above Hamiltonian \(H\).
For the proof of the existence of time quasi-periodic solutions to the problem, the authors introduce the system linearized around equilibrium \((0,0)\): \(\partial_{t}\eta =G(0, \mathsf{h})\psi \), \(\partial_{t}\psi =-\eta \), where \(G(0,\mathsf{h})=D\tanh (\mathsf{h}D)\) is the Dirichlet-Neumann operator at the flat surface \(\eta =0\). They consider the above problem as a singular perturbation of the linearized one. The main tools of the proof are the Nash-Moser theory, a degenerate KAM theory, an analysis of the linear operators involved in the problem, and the theory of pseudodifferential operators. The long paper presents the details of the proof, and the paper ends with appendices devoted to properties of the Dirichlet-Neumann operator, of Whitney differentiable functions and to a Nash-Moser-Hörmander implicit function theorem.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
86A05 Hydrology, hydrography, oceanography

References:

[1] Alazard, T.; Baldi, P., Gravity capillary standing water waves, Arch. Ration. Mech. Anal., 217, 741-830, (2015) · Zbl 1317.35181 · doi:10.1007/s00205-015-0842-5
[2] Alazard, T.; Burq, N.; Zuily, C., On the Cauchy problem for gravity water waves, Invent. Math., 198, 71-163, (2014) · Zbl 1308.35195 · doi:10.1007/s00222-014-0498-z
[3] Alazard, T.; Burq, N.; Zuily, C., Cauchy theory for the gravity water waves system with non-localized initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 337-395, (2016) · Zbl 1339.35227 · doi:10.1016/j.anihpc.2014.10.004
[4] Alazard, T.; Delort, J-M, Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., 48, 1149-1238, (2015) · Zbl 1347.35198 · doi:10.24033/asens.2268
[5] Alazard, T.; Métivier, G., Paralinearization of the Dirichlet to Neumann operator, and regularity of the three dimensional water waves, Commun. Part. Differ. Equ., 34, 1632-1704, (2009) · Zbl 1207.35082 · doi:10.1080/03605300903296736
[6] Baldi, P., Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. I. H. Poincaré (C) Anal. Non Linéaire, 30, 33-77, (2013) · Zbl 1285.35090 · doi:10.1016/j.anihpc.2012.06.001
[7] Baldi, P.; Berti, M.; Montalto, R., KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359, 471-536, (2014) · Zbl 1350.37076 · doi:10.1007/s00208-013-1001-7
[8] Baldi, P.; Berti, M.; Montalto, R., KAM for autonomous quasi-linear perturbations of KdV, Ann. I. H. Poincaré (C) Anal. Non Linéaire, AN, 33, 1589-1638, (2016) · Zbl 1370.37134 · doi:10.1016/j.anihpc.2015.07.003
[9] Baldi, P.; Berti, M.; Montalto, R., KAM for autonomous quasi-linear perturbations of mKdV, Boll. Unione Mat. Ital., 9, 143-188, (2016) · Zbl 1339.37073 · doi:10.1007/s40574-016-0065-1
[10] Baldi, P.; Haus, E., A Nash-Moser-Hörmander implicit function theorem with applications to control and Cauchy problems for PDEs, J. Funct. Anal., 273, 3875-3900, (2017) · Zbl 06792303 · doi:10.1016/j.jfa.2017.09.016
[11] Bambusi, D.; Berti, M.; Magistrelli, E., Degenerate KAM theory for partial differential equations, J. Differ. Equ., 250, 3379-3397, (2011) · Zbl 1213.37103 · doi:10.1016/j.jde.2010.11.002
[12] Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000) · Zbl 0946.46002
[13] Berti, M.; Biasco, L.; Procesi, M., KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Éc. Norm. Supér. (4), 46, 301-373, (2013) · Zbl 1304.37055 · doi:10.24033/asens.2190
[14] Berti, M.; Biasco, L.; Procesi, M., KAM for Reversible Derivative Wave Equations, Arch. Ration. Mech. Anal., 212, 905-955, (2014) · Zbl 1293.35275 · doi:10.1007/s00205-014-0726-0
[15] Berti, M.; Bolle, Ph, Quasi-periodic solutions with Sobolev regularity of NLS on \( {{\mathbb{T}}}^d \) with a multiplicative potential, Eur. J. Math., 15, 229-286, (2013) · Zbl 1260.35196 · doi:10.4171/JEMS/361
[16] Berti, M., Bolle, P.: A Nash-Moser approach to KAM theory. Fields Institute Communications, special volume “Hamiltonian PDEs and Applications”, pp. 255-284 (2015) · Zbl 1342.37073
[17] Berti, M.; Bolle, Ph; Procesi, M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, (2010) · Zbl 1203.47038 · doi:10.1016/j.anihpc.2009.11.010
[18] Berti, M.; Corsi, L.; Procesi, M., An abstract Nash-Moser Theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds, Commun. Math. Phys., 334, 1413-1454, (2015) · Zbl 1312.35157 · doi:10.1007/s00220-014-2128-4
[19] Berti, M., Delort, J.-M.: Almost global solutions of capillary-gravity water waves equations on the circle, UMI Lecture Notes, Springer (to appear) · Zbl 1409.35002
[20] Berti, M.; Montalto, R., Quasi-periodic water waves, J. Fixed Point Theory Appl., 19, 129-156, (2017) · Zbl 1360.76046 · doi:10.1007/s11784-016-0375-z
[21] Berti, M., Montalto, R.: KAM for gravity capillary water waves. Memoires of AMS, Memo 891 (to appear), preprint arXiv:1602.02411 · Zbl 1360.76046
[22] Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton (2005) · Zbl 1137.35001
[23] Corsi, L., Feola, R., Procesi, M.: Finite dimensional invariant KAM tori for tame vector fields, preprint, arXiv:1611.01641
[24] Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles, volume 9 of Panoramas et Synthèses. Société Mathématique de France, Paris (2000) · Zbl 0977.35014
[25] Craig, W.; Nicholls, D., Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32, 323-359, (2000) · Zbl 0976.35049 · doi:10.1137/S0036141099354181
[26] Craig, W.; Sulem, C., Numerical simulation of gravity waves, J. Comput. Phys., 108, 73-83, (1993) · Zbl 0778.76072 · doi:10.1006/jcph.1993.1164
[27] Craig, W.; Worfolk, P., An integrable normal form for water waves in infinite depth, Physica D, 84, 513-531, (1995) · Zbl 0883.35092 · doi:10.1016/0167-2789(95)00067-E
[28] Dyachenko, AI; Lvov, YV; Zakharov, VE, Five-wave interaction on the surface of deep fluid, Physica D, 87, 233-261, (1995) · Zbl 1194.76026 · doi:10.1016/0167-2789(95)00168-4
[29] Eliasson, LH; Kuksin, S., KAM for nonlinear Schrödinger equation, Ann. Math. (2), 172, 371-435, (2010) · Zbl 1201.35177 · doi:10.4007/annals.2010.172.371
[30] Féjoz, J., Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dyn. Syst., 24, 1521-1582, (2004) · Zbl 1087.37506 · doi:10.1017/S0143385704000410
[31] Feola, R.; Procesi, M., Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differ. Equ., 259, 3389-3447, (2015) · Zbl 1334.37087 · doi:10.1016/j.jde.2015.04.025
[32] Feola, R., Procesi, M.: KAM for quasi-linear autonomous NLS, preprint 2018, arXiv:1705.07287
[33] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for the gravity water waves equation in dimension 3, Ann. Math., 2, 691-754, (2012) · Zbl 1241.35003 · doi:10.4007/annals.2012.175.2.6
[34] Hörmander, L., The boundary problems of physical geodesy, Arch. Ration. Mech. Anal., 62, 1-52, (1976) · Zbl 0331.35020 · doi:10.1007/BF00251855
[35] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1990) · Zbl 0687.35002
[36] Ifrim, M., Tataru, D.: Two dimensional gravity water waves with constant vorticity: I. Cubic lifespan, arXiv:1510.07732 · Zbl 1375.35347
[37] Ionescu, A.; Pusateri, F., Global solutions for the gravity water waves system in 2d, Invent. Math., 199, 653-804, (2015) · Zbl 1325.35151 · doi:10.1007/s00222-014-0521-4
[38] Iooss, G.; Plotnikov, P., Existence of multimodal standing gravity waves, J. Math. Fluid Mech., 7, s349-s364, (2005) · Zbl 1096.76009 · doi:10.1007/s00021-005-0164-8
[39] Iooss, G.; Plotnikov, P., Multimodal standing gravity waves: a completely resonant system, J. Math. Fluid Mech., 7, s110-s126, (2005) · Zbl 1065.35051 · doi:10.1007/s00021-004-0128-4
[40] Iooss, G., Plotnikov, P.: Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Am. Math. Soc. 200(940), viii+128 (2009) · Zbl 1172.76005
[41] Iooss, G.; Plotnikov, P., Asymmetrical tridimensional traveling gravity waves, Arch. Ration. Mech. Anal., 200, 789-880, (2011) · Zbl 1231.35169 · doi:10.1007/s00205-010-0372-0
[42] Iooss, G.; Plotnikov, P.; Toland, J., Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177, 367-478, (2005) · Zbl 1176.76017 · doi:10.1007/s00205-005-0381-6
[43] Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003) · Zbl 1032.37001 · doi:10.1007/978-3-662-08054-2
[44] Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional Anal. i Prilozhen. 2, 22-37, 95 (1987) · Zbl 0631.34069
[45] Kuksin, S.: Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, vol. 19. Oxford University Press, Oxford (2000) · Zbl 0960.35001
[46] Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 3, 605-654, 18 (2005) · Zbl 1069.35056
[47] Lannes, D.: The water waves problem: mathematical analysis and asymptotics. Mathematical Surveys and Monographs, 188 (2013) · Zbl 1410.35003
[48] Levi-Civita, T., Détermination rigoureuse des ondes permanentes d’ ampleur finie, Math. Ann., 93, 264-314, (1925) · JFM 51.0671.06 · doi:10.1007/BF01449965
[49] Liu, J.; Yuan, X., A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307, 629-673, (2011) · Zbl 1247.37082 · doi:10.1007/s00220-011-1353-3
[50] Métivier, G.: Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Pubblicazioni Scuola Normale Pisa, 5 (2008) · Zbl 1156.35002
[51] Montalto, R., Quasi-periodic solutions of forced Kirchhoff equation, Nonlinear Differ. Equ. Appl., 24, 9, (2017) · Zbl 1373.37166 · doi:10.1007/s00030-017-0432-3
[52] Moser, J., Convergent series expansions for quasi-periodic motions, Math. Ann., 169, 136-176, (1967) · Zbl 0149.29903 · doi:10.1007/BF01399536
[53] Plotnikov, P.; Toland, J., Nash-Moser theory for standing water waves, Arch. Ration. Mech. Anal., 159, 1-83, (2001) · Zbl 1033.76005 · doi:10.1007/PL00004246
[54] Pöschel, J., A KAM-Theorem for some nonlinear PDEs, Ann. Sci. Norm. Pisa, 23, 119-148, (1996) · Zbl 0870.34060
[55] Procesi, C.; Procesi, M., A KAM algorithm for the completely resonant nonlinear Schrödinger equation, Adv. Math., 272, 399-470, (2015) · Zbl 1312.37047 · doi:10.1016/j.aim.2014.12.004
[56] Robbin, J.; Salamon, D., The exponential Vandermonde matrix, Linear Algebra Appl., 317, 225, (2000) · Zbl 0967.15014 · doi:10.1016/S0024-3795(00)00186-5
[57] Rüssmann, H., Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6, 119-204, (2001) · Zbl 0992.37050 · doi:10.1070/RD2001v006n02ABEH000169
[58] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, no. 30. Princeton University Press, Princeton, N.J. (1970) · Zbl 0207.13501
[59] Wu, S., Global well-posedness of the 3-D full water wave problem, Invent. Math., 1, 125-220, (2011) · Zbl 1221.35304 · doi:10.1007/s00222-010-0288-1
[60] Zakharov, VE, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194, (1968) · doi:10.1007/BF00913182
[61] Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems. I-II. Commun. Pure Appl. Math. 28, 91-140 (1975) and 29, 49-111 (1976) · Zbl 0309.58006
[62] Zhang, J.; Gao, M.; Yuan, X., KAM tori for reversible partial differential equations, Nonlinearity, 24, 1189-1228, (2011) · Zbl 1216.37025 · doi:10.1088/0951-7715/24/4/010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.