×

Formal and rigid geometry. II: Flattening techniques. (English) Zbl 0808.14018

This is a sequel to part I by the same authors [cf. Math. Ann. 295, No. 2, 291-317 (1993; see the preceding review)].
The main theorem, which was announced by Raynaud, says that a flat morphism between quasi-compact rigid spaces is induced by a flat morphism between suitable formal schemes.
The theorem is proved in the general situation in which the base is an arbitrary complete noetherian ring. – The proof of the theorem is an application of techniques which are developed in the first part of the paper. These include lifting techniques in formal geometry and the flattening technique of Gruson and Raynaud.

MSC:

14G20 Local ground fields in algebraic geometry
11G25 Varieties over finite and local fields

Citations:

Zbl 0808.14017

References:

[1] Bourbaki, N.: Alg?bre commutative, Chap. 1-9. Paris: Hermann 1961-65 and Paris: Masson 1980-85
[2] Bass, H.: Big projective modules are free. Ill. J. Math.7, 23-31 (1963) · Zbl 0115.26003
[3] Bosch, S., G?ntzer, U., Remmert, R.: Non-archimedean analysis (Grundl. Math., Bd. 261) Berlin Heidelberg New York: Springer 1984
[4] Grothendieck, A.: El?ments de la g?om?trie alg?brique. Publ. Math., Inst. Hautes ?tud. Sci.4, 8, 11, 17, 20, 24, 28, 32 (1960-1967)
[5] Gerritzen, L., Grauert, H.: Die Azyklizit?t der affinoiden ?berdeckungen. In: Spencer, D.C., Iyanaga, S. (eds.) Global Analysis. Papers in Honor of K. Kodaira, pp. 159-184. Tokyo: University of Tokyo Press and Princeton: Princeton University Press 1969 · Zbl 0197.17303
[6] Bosch, S., L?tkebohmert, W.: Formal and rigid geometry. I. Rigid spaces. Math. Ann.295, 291-317 (1993) · Zbl 0808.14017 · doi:10.1007/BF01444889
[7] Kiehl, R.: Der Endlichkeitssatz f?r eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie. Invent. Math.2, 191-214 (1967) · Zbl 0202.20101 · doi:10.1007/BF01425513
[8] Kiehl, R.: Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie. Invent. Math.2, 256-273 (1967) · Zbl 0202.20201 · doi:10.1007/BF01425404
[9] Kiehl, R.: Analytische Familien affinoider Algebren. Sitzungsber. Heidelb. Akad. Wiss., Math.-Naturwiss. Kl. 25-49 (1968) · Zbl 0177.06101
[10] L?tkebohmert, W.: Formal-algebraic and rigid-analytic geometry. Math. Ann.286, 341-371 (1990) · Zbl 0716.32022 · doi:10.1007/BF01453580
[11] Mehlmann, F.: Ein Beweis f?r einen Satz von Raynaud ?ber flache Homomorphismen affinoider Algebren. Schriftenr. Math. Inst. Univ. M?nster, 2. Ser.19 (1981) · Zbl 0455.14014
[12] Raynaud, M.: G?om?trie anaytique rigide d’apr?s Tate, Kiehl, ... Table ronde d’analyse non archimedienne. M?m. Soc. Math. Fr. 39-40, 319-327 (1974)
[13] Raynaud, M., Gruson, L.: Crit?res de platitude et de projectivit?. Invent. Math.13, 1-89 (1971) · Zbl 0227.14010 · doi:10.1007/BF01390094
[14] Tate, J.: Rigid analytic spaces. Invent. Math.12, 257-289 (1971) · Zbl 0212.25601 · doi:10.1007/BF01403307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.