×

Conservative multirate multiscale simulation of multiphase flow in heterogeneous porous media. (English) Zbl 1453.76091

Summary: Accurate and efficient simulation of multiphase flow in heterogeneous porous media motivates the development of space-time multiscale strategies for the coupled nonlinear flow (pressure) and saturation transport equations. The flow equation entails heterogeneous high-resolution (fine-scale) coefficients and is global (elliptic or parabolic). The time-dependent saturation profile, on the other hand, may exhibit sharp local gradients or discontinuities (fronts) where the solution accuracy is highly sensitive to the time-step size. Therefore, accurate flow solvers need to address the multiscale spatial scales, while advanced transport solvers need to also tackle multiple time scales. This paper presents the first multirate multiscale method for space-time conservative multiscale simulation of sequentially coupled flow and transport equations. The method computes the pressure equation at the coarse spatial scale with a multiscale finite volume technique, while the transport equation is solved by taking variable time-step sizes at different locations of the domain. At each coarse time step, the developed local time-stepping technique employs an adaptive recursive time step refinement to capture the fronts accurately. The applicability (accuracy and efficiency) of the method is investigated for a wide range of two-phase flow simulations in heterogeneous porous media. For the studied cases, the proposed method is found to provide 3 to 4 times faster simulations. Therefore, it provides a promising strategy to minimize the tradeoff between accuracy and efficiency for field-scale applications.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) · Zbl 0880.73065
[2] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods: Theory and Applications, vol. 4 (2009), Springer Science & Business Media · Zbl 1163.65080
[3] Efendiev, Y.; Ginting, V.; Hou, T.; Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 1, 155-174 (2006) · Zbl 1158.76349
[4] Jenny, P.; Lee, S.; Tchelepi, H., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 1, 47-67 (2003) · Zbl 1047.76538
[5] Hajibeygi, H.; Bonfigli, G.; Hesse, M. A.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 19, 8604-8621 (2008) · Zbl 1151.65091
[6] Aarnes, J.; Hou, T. Y., Multiscale domain decomposition methods for elliptic problems with high aspect ratios, Acta Math. Appl. Sin., 18, 1, 63-76 (Mar 2002) · Zbl 1003.65142
[7] Chen, Z.; Hou, T., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 242, 541-576 (2003) · Zbl 1017.65088
[8] Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 3, 377-398 (2008) · Zbl 1259.76047
[9] Møyner, O.; Lie, K.-A., A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, J. Comput. Phys., 304, 46-71 (2016) · Zbl 1349.76824
[10] Hajibeygi, H.; Jenny, P., Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, J. Comput. Phys., 228, 14, 5129-5147 (2009) · Zbl 1280.76019
[11] Chung, E. T.; Efendiev, Y.; Leung, W. T.; Ye, S., Generalized multiscale finite element methods for space-time heterogeneous parabolic equations, Comput. Math. Appl., 76, 2, 419-437 (2018) · Zbl 1419.65056
[12] Kozlova, A.; Li, Z.; Natvig, J. R.; Watanabe, S.; Zhou, Y.; Bratvedt, K.; Lee, S. H., A real-field multiscale black-oil reservoir simulator, SPE J., 21, 06, 2049-2061 (2016)
[13] Lee, S.; Wolfsteiner, C.; Tchelepi, H., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity, Comput. Geosci., 12, 3, 351-366 (2008) · Zbl 1259.76049
[14] Hajibeygi, H.; Tchelepi, H. A., Compositional multiscale finite-volume formulation, SPE J., 19, 02, 316-326 (2014)
[15] Møyner, O.; Lie, K.-A., A multiscale restriction-smoothed basis method for compressible black-oil models, SPE J., 21, 06, 2079-2096 (2016)
[16] Møyner, O.; Tchelepi, H. A., A mass-conservative sequential implicit multiscale method for isothermal equation-of-state compositional problems, SPE J., 23, 06, 2376-2393 (2018)
[17] Cusini, M.; Lukyanov, A. A.; Natvig, J.; Hajibeygi, H., Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media, J. Comput. Phys., 299, 472-486 (2015) · Zbl 1351.76055
[18] Cusini, M.; Fryer, B.; van Kruijsdijk, C.; Hajibeygi, H., Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media, J. Comput. Phys., 354, 593-612 (2018) · Zbl 1380.76097
[19] Praditia, T.; Helmig, R.; Hajibeygi, H., Multiscale formulation for coupled flow-heat equations arising from single-phase flow in fractured geothermal reservoirs, Comput. Geosci., 22, 5, 1305-1322 (Oct 2018) · Zbl 1406.86020
[20] Vasilyeva, M.; Babaei, M.; Chung, E. T.; Spiridonov, D., Multiscale modeling of heat and mass transfer in fractured media for enhanced geothermal systems applications, Appl. Math. Model., 67, 159-178 (2019) · Zbl 1481.86028
[21] Hajibeygi, H.; Karvounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 24, 8729-8743 (2011) · Zbl 1370.76095
[22] Tene, M.; Kobaisi, M. S.A.; Hajibeygi, H., Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS), J. Comput. Phys., 321, 819-845 (2016) · Zbl 1349.76394
[23] Bosma, S.; Hajibeygi, H.; Tene, M.; Tchelepi, H. A., Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM), J. Comput. Phys., 351, 145-164 (2017) · Zbl 1375.76097
[24] Shah, S.; Møyner, O.; Tene, M.; Lie, K.-A.; Hajibeygi, H., The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), J. Comput. Phys., 318, 36-57 (2016) · Zbl 1349.76385
[25] Vasilyeva, M.; Chung, E. T.; Efendiev, Y.; Kim, J., Constrained energy minimization based upscaling for coupled flow and mechanics, J. Comput. Phys., 376, 660-674 (2019) · Zbl 1416.76163
[26] Akkutlu, I. Y.; Efendiev, Y.; Vasilyeva, M.; Wang, Y., Multiscale model reduction for shale gas transport in poroelastic fractured media, J. Comput. Phys., 353, 356-376 (2018) · Zbl 1380.76032
[27] Lunati, I.; Tyagi, M.; Lee, S. H., An iterative multiscale finite volume algorithm converging to the exact solution, J. Comput. Phys., 230, 5, 1849-1864 (2011) · Zbl 1391.76428
[28] Zhou, H.; Tchelepi, H. A., Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE J., 17, 02, 523-539 (2012)
[29] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale solver for flow in heterogeneous porous media, J. Comput. Phys., 259, 284-303 (2014) · Zbl 1349.76835
[30] HosseiniMehr, M.; Cusini, M.; Vuik, C.; Hajibeygi, H., Algebraic dynamic multilevel method for embedded discrete fracture model (F-ADM), J. Comput. Phys., 373, 324-345 (2018) · Zbl 1416.76151
[31] de Moraes, R. J.; Rodrigues, J. R.P.; Hajibeygi, H.; Jansen, J. D., Multiscale gradient computation for flow in heterogeneous porous media, J. Comput. Phys., 336, 644-663 (2017) · Zbl 1375.76191
[32] Jansen, J.; Brouwer, D.; Naevdal, G.; Kruijsdijk, C. V., Closed-loop reservoir management, First Break, 23, 43-48 (2005)
[33] Rice, J., Split Runge-Kutta methods for simultaneous equations, J. Res. Natl. Inst. Stand. Technol., 60, 1960 (1960)
[34] Thomas, G. W.; Thurnau, D. H., Reservoir simulation using an adaptive implicit method, Soc. Pet. Eng. J., 23, 05, 759-768 (1983)
[35] Collins, D. A.; Nghiem, L. X.; Li, Y. K.; Grabonstotter, J. E., An efficient approach to adaptive-implicit compositional simulation with an equation of state, SPE Reserv. Eng., 7, 02, 259-264 (1992)
[36] Maes, J.; Moncorgé, A.; Tchelepi, H., Thermal adaptive implicit method: time step selection, J. Pet. Sci. Eng., 106, 34-45 (2013)
[37] Forsyth, P.; Sammon, P., Practical considerations for adaptive implicit methods in reservoir simulation, J. Comput. Phys., 62, 2, 265-281 (1986) · Zbl 0605.76104
[38] Fung, L. S.-K.; Collins, D. A.; Nghiem, L. X., An adaptive-implicit switching criterion based on numerical stability analysis (includes associated paper 18727), SPE Reserv. Eng., 4, 01, 45-51 (1989)
[39] Moortgat, J., Adaptive implicit finite element methods for multicomponent compressible flow in heterogeneous and fractured porous media, Water Resour. Res., 53, 73-92 (2017)
[40] Kwok, F.; Tchelepi, H., Potential-based reduced newton algorithm for nonlinear multiphase flow in porous media, J. Comput. Phys., 227, 1, 706-727 (2007) · Zbl 1388.76258
[41] Andrus, J., Numerical solution of systems of ordinary differential equations separated into subsystems, SIAM J. Numer. Anal., 16, 605-611 (1979) · Zbl 0421.65044
[42] Savcenco, V.; Hundsdorfer, W.; Verwer, J., A multirate time stepping strategy for stiff ordinary differential equations, BIT Numer. Math., 47, 137-155 (2007) · Zbl 1113.65071
[43] Constantinescu, E.; Sandu, A., Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput., 33, 3, 239-278 (2007) · Zbl 1127.76033
[44] Fok, P., A linearly fourth order multirate Runge-Kutta method with error control, J. Sci. Comput., 1-19 (2015)
[45] Ketcheson, D. I.; MacDonald, C. B.; Ruuth, S. J., Spatially partitioned embedded Runge-Kutta methods, SIAM J. Numer. Anal., 51, 5, 2887-2910 (2013) · Zbl 1285.65061
[46] Delpopolo Carciopolo, L.; Bonaventura, L.; Scotti, A.; Formaggia, L., A conservative implicit multirate method for hyperbolic problems, Comput. Geosci., 23, 4, 647-664 (2019) · Zbl 1420.65092
[47] Hajibeygi, H.; Lee, S. H.; Lunati, I., Accurate and efficient simulation of multiphase flow in a heterogeneous reservoir with error estimate and control in the multiscale finite-volume framework, SPE J., 17, 04, 1-071 (2012)
[48] Brooks, R.; Corey, T., Hydraulic Properties of Porous Media, Hydrology Papers, vol. 24, 37 (1964), Colorado State University
[49] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems (1997), Springer-Verlag
[50] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Chapman & Hall
[51] Jenny, P.; Tchelepi, H. A.; Lee, S. H., Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions, J. Comput. Phys., 228, 20, 7497-7512 (2009) · Zbl 1391.76553
[52] Jenny, P.; Lunati, I., Modeling complex wells with the multi-scale finite-volume method, J. Comput. Phys., 228, 687-702 (2009) · Zbl 1155.76040
[53] Vohralík, M.; Wheeler, M. F., A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, Comput. Geosci., 17, 5, 789-812 (2013) · Zbl 1393.76069
[54] Christie, M.; Blunt, M., Tenth SPE comparative solution project: a comparison of upscaling techniques, (SPE Reservoir Simulation Symposium, 11-14 February (2001))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.