×

A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. (English) Zbl 1349.76824

Summary: A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructed by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite- volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models.compressible flow, e. g., as modeled by the black-oil equations, is discussed in a separate paper.

MSC:

76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Matlab; ML; MRST-AD; PETSc; MRST
Full Text: DOI

References:

[1] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (2009), Springer Verlag: Springer Verlag New York · Zbl 1163.65080
[2] Babuška, I.; Caloz, G.; Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 4, 945-981 (1994) · Zbl 0807.65114
[3] Hou, T.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[4] Arbogast, T., Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Comput. Geosci., 6, 3-4, 453-481 (2002) · Zbl 1094.76532
[5] Arbogast, T.; Boyd, K. J., Subgrid upscaling and mixed multiscale finite elements, SIAM J. Numer. Anal., 44, 3, 1150-1171 (2004) · Zbl 1120.65122
[6] Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576 (2003) · Zbl 1017.65088
[7] Kippe, V.; Aarnes, J. E.; Lie, K.-A., Multiscale finite-element methods for elliptic problems in porous media flow, (Binning, P.; Engesgaard, P.; Dahle, H.; Pinder, G.; Gray, W., Proceedings of the XVI International Conference on Computational Methods in Water Resources. Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark (2006)) · Zbl 1309.76191
[8] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) · Zbl 1047.76538
[9] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6, 1, 319-346 (2007) · Zbl 1322.76039
[10] Lipnikov, K.; Moulton, J. D.; Svyatskiy, D., A multilevel multiscale mimetic \((m^3)\) method for two-phase flows in porous media, J. Comput. Phys., 227, 14, 6727-6753 (2008) · Zbl 1338.76096
[11] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2, 3, 421-439 (2004) · Zbl 1181.76125
[12] Aarnes, J.; Lie, K.-A., Toward reservoir simulation on geological grid models, (Proceedings of the 9th European Conference on the Mathematics of Oil Recovery (2004), EAGE: EAGE Cannes, France)
[13] Lunati, I.; Jenny, P., Multiscale finite-volume method for density-driven flow in porous media, Comput. Geosci., 12, 3, 337-350 (2008) · Zbl 1259.76051
[14] Lunati, I.; Jenny, P., Multiscale finite-volume method for compressible multiphase flow in porous media, J. Comput. Phys., 216, 2, 616-636 (2006) · Zbl 1220.76049
[15] Lee, S. H.; Wolfsteiner, C.; Tchelepi, H., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three phase flow with gravity, Comput. Geosci., 12, 3, 351-366 (2008) · Zbl 1259.76049
[16] Zhou, H.; Tchelepi, H. A., Operator-based multiscale method for compressible flow, SPE J., 13, 2, 267-273 (2008)
[17] Hajibeygi, H.; Jenny, P., Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, J. Comput. Phys., 228, 14, 5129-5147 (2009) · Zbl 1280.76019
[18] Hajibeygi, H.; Tchelepi, H. A., Compositional multiscale finite-volume formulation, SPE J., 19, 2, 316-326 (2014)
[19] Lunati, I.; Tyagi, M.; Lee, S. H., An iterative multiscale finite volume algorithm converging to the exact solution, J. Comput. Phys., 230, 5, 1849-1864 (2011) · Zbl 1391.76428
[20] Zhou, H.; Tchelepi, H. A., Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE J., 17, 2, 523-539 (2012)
[21] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale solver for flow in heterogeneous porous media, J. Comput. Phys., 259, 284-303 (2014) · Zbl 1349.76835
[22] Møyner, O., Multiscale finite-volume methods on unstructured grids (2012), Norwegian University of Science and Technology: Norwegian University of Science and Technology Trondheim, Master’s thesis
[23] Møyner, O.; Lie, K.-A., The multiscale finite volume method on unstructured grids, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18-20 February 2013 (2013)), sPE 163649-MS
[24] Sandve, T. H.; Berre, I.; Keilegavlen, E.; Nordbotten, J. M., Multiscale simulation of flow and heat transport in fractured geothermal reservoirs: inexact solvers and improved transport upscaling, (Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, February 11-13, Stanford, California, USA (2013))
[25] Møyner, O.; Lie, K.-A., The multiscale finite-volume method on stratigraphic grids, SPE J., 19, 5, 816-831 (2014)
[26] Kozlova, A.; Li, Z.; Natvig, J. R.; Watanabe, S.; Zhou, Y.; Bratvedt, K.; Lee, S. H., A real-field multiscale black-oil reservoir simulator, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA (2015)), sPE 173226-MS
[27] Parramore, E.; Edwards, M. G.; Lamine, S.; Pal, M., Multiscale formulations with CVD-MPFA schemes on structured and unstructured grids, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18-20 February 2013 (2013)), sPE 163626-MS
[28] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) · Zbl 1259.76065
[29] Natvig, J. R.; Skaflestad, B.; Bratvedt, F.; Bratvedt, K.; Lie, K.-A.; Laptev, V.; Khataniar, S. K., Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs, SPE J., 16, 4, 880-888 (2011)
[30] Alpak, F. O.; Pal, M.; Lie, K.-A., A multiscale method for modeling flow in stratigraphically complex reservoirs, SPE J., 17, 4, 1056-1070 (2012)
[31] Pal, M.; Lamine, S.; Lie, K.-A.; Krogstad, S., Multiscale method for simulating two and three-phase flow in porous media, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 18-20 February 2013 (2013)), sPE 163669-MS
[32] Krogstad, S.; Lie, K.-A.; Nilsen, H. M.; Natvig, J. R.; Skaflestad, B.; Aarnes, J. E., A multiscale mixed finite-element solver for three-phase black-oil flow, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2-4 February 2009 (2009))
[33] Krogstad, S.; Lie, K.-A.; Skaflestad, B., Mixed multiscale methods for compressible flow, (Proceedings of ECMOR XIII—13th European Conference on the Mathematics of Oil Recovery (2012), EAGE: EAGE Biarritz, France)
[34] Møyner, O.; Lie, K.-A., A multiscale two-point flux-approximation method, J. Comput. Phys., 275, 273-293 (2014) · Zbl 1349.76368
[35] Vanek, P.; Mandel, J.; Brezina, M., Algebraic Multigrid on Unstructured Meshes (1994), University of Colorado at Denver: University of Colorado at Denver Denver, CO, USA, Tech. rep. 34
[36] Vanek, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[37] Vanek, P.; Brezina, M.; Mandel, J., Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math., 88, 3, 559-579 (2001) · Zbl 0992.65139
[38] Brezina, M.; Falgout, R.; MacLachlan, S.; Manteuffel, T.; McCormick, S.; Ruge, J., Adaptive smoothed aggregation \((α\) sa) multigrid, SIAM Rev., 47, 2, 317-346 (2005) · Zbl 1075.65042
[39] Stüben, K., A review of algebraic multigrid, J. Comput. Appl. Math., 128, 1, 281-309 (2001) · Zbl 0979.65111
[40] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc users manual (2015), Argonne National Laboratory, Tech. rep. ANL-95/11 - Revision 3.6
[41] Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M., ML 5.0 smoothed aggregation user’s guide (2006), Sandia National Laboratories, Tech. rep. SAND2006-2649
[43] Møyner, O., Construction of multiscale preconditioners on stratigraphic grids, (ECMOR XIV - 14th European Conference on the Mathematics of Oil Recovery. ECMOR XIV - 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014 (2014), EAGE)
[44] Brenier, Y.; Jaffré, J., Upstream differencing for multiphase flow in reservoir simulation, SIAM J. Numer. Anal., 28, 3, 685-696 (1991) · Zbl 0735.76071
[45] Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4, 308-317 (2001)
[46] Lunati, I.; Lee, S. H., An operator formulation of the multiscale finite-volume method with correction function, Multiscale Model. Simul., 8, 1, 96-109 (2009) · Zbl 1404.65222
[47] Lie, K.-A.; Krogstad, S.; Ligaarden, I. S.; Natvig, J. R.; Nilsen, H.; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322 (2012) · Zbl 1348.86002
[48] Krogstad, S.; Lie, K.-A.; Møyner, O.; Nilsen, H. M.; Raynaud, X.; Skaflestad, B., MRST-AD - an open-source framework for rapid prototyping and evaluation of reservoir simulation problems, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas (2015))
[49] Lie, K.-A., An introduction to reservoir simulation using MATLAB: user guide for the Matlab reservoir Simulation Toolbox (MRST) (May 2014), 1st edition
[50] The MATLAB reservoir simulation toolbox (Nov. 2014), version 2014b
[51] Sandvin, A.; Keilegavlen, E.; Nordbotten, J. M., Auxiliary variables for 3d multiscale simulations in heterogeneous porous media, J. Comput. Phys., 238, 141-153 (2013) · Zbl 1286.65179
[52] Fossen, H.; Hesthammer, J., Structural geology of the Gullfaks Field, (Coward, M. P.; Johnson, H.; Daltaban, T. S., Structural Geology in Reservoir Characterization, vol. 127 (1998)), 231-261, Geological Society Special Publication
[53] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[54] Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 3, 377-398 (2008) · Zbl 1259.76047
[55] Hesse, M. A.; Mallison, B. T.; Tchelepi, H. A., Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations, Multiscale Model. Simul., 7, 2, 934-962 (2008) · Zbl 1277.76104
[56] Lunati, I.; Jenny, P., Treating highly anisotropic subsurface flow with the multiscale finite-volume method, Multiscale Model. Simul., 6, 1, 308-318 (2007) · Zbl 1388.76366
[57] Tene, M.; Al Kobaisi, M. S.; Hajibeygi, H., Algebraic multiscale solver for flow in heterogeneous fractured porous media, (SPE Reservoir Simulation Symposium Held in Houston. SPE Reservoir Simulation Symposium Held in Houston, Texas, USA, 23-25 February 2015 (2015)), sPE 173200-MS
[58] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul., 5, 2, 337-363 (2006) · Zbl 1124.76022
[59] Lie, K.-A.; Natvig, J. R.; Krogstad, S.; Yang, Y.; Wu, X.-H., Grid adaptation for the Dirichlet-Neumann representation method and the multiscale mixed finite-element method, Comput. Geosci., 18, 3, 357-372 (2014) · Zbl 1386.76101
[60] (Jun. 2012), IO Center - Norne Benchmark Case
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.