×

A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows. (English) Zbl 1393.76069

Summary: This paper develops a general abstract framework for a posteriori estimates for immiscible incompressible two-phase flows in porous media. We measure the error by the dual norm of the residual and, for mathematical correctness, employ the concept of global and complementary pressures in the analysis. Our estimators allow to estimate separately the different error components, namely, the spatial discretization error, the temporal discretization error, the linearization error, the iterative coupling error, and the algebraic solver error. We propose an adaptive algorithm wherein the different iterative procedures (iterative linearization, iterative coupling, iterative solution of linear systems) are stopped when the corresponding errors do not affect significantly the overall error and wherein the spatial and temporal errors are equilibrated. Consequently, important computational savings can be achieved while guaranteeing a user-given precision. The developed framework covers fully implicit, implicit pressure-explicit saturation, or iterative coupling formulations; conforming spatial discretization schemes such as the vertex-centered finite volume method or the finite element method and nonconforming spatial discretization schemes such as the cell-centered finite volume method, the mixed finite element method, or the discontinuous Galerkin method; linearizations such as the Newton or the fixed-point one; and general linear solvers. Numerical experiments for a model problem are presented to illustrate the theoretical results. Only by stopping timely the linear and nonlinear solvers, speedups by a factor between 10 and 20 in terms of the number of total linear solver iterations are achieved.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
86A05 Hydrology, hydrography, oceanography

Software:

IPARS; NewtonLib

References:

[1] Achdou, Y; Bernardi, C; Coquel, F, A priori and a posteriori analysis of finite volume discretizations of darcy’s equations, Numer. Math., 96, 17-42, (2003) · Zbl 1050.76035 · doi:10.1007/s00211-002-0436-7
[2] Ainsworth, M, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45, 1777-1798, (2007) · Zbl 1151.65083 · doi:10.1137/060665993
[3] Alt, HW; Luckhaus, S, Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 311-341, (1983) · Zbl 0497.35049 · doi:10.1007/BF01176474
[4] Amaziane, B; Jurak, M; Žgaljić Keko, A, An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, J. Differ. Equ., 250, 1685-1718, (2011) · Zbl 1271.76288 · doi:10.1016/j.jde.2010.09.008
[5] Angermann, L, Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems, Computing, 55, 305-323, (1995) · Zbl 1151.65083 · doi:10.1137/060665993
[6] Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary value problems in mechanics of nonhomogeneous fluids. In: Studies in Mathematics and Its Applications, vol. 22. North-Holland, Amsterdam (1990) · Zbl 0696.76001
[7] Arbogast, T, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19, 1009-1031, (1992) · Zbl 0783.76090 · doi:10.1016/0362-546X(92)90121-T
[8] Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure (2012). http://users.tkk.fi/mojuntun/preprints/pcjump.pdf. Aalto University, Department of Mathematics and Systems Analysis, Preprint 2012/4/16 · Zbl 1393.76059
[9] Arbogast, T; Wheeler, MF; Zhang, NY, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33, 1669-1687, (1996) · Zbl 0856.76033 · doi:10.1137/S0036142994266728
[10] Arioli, M; Loghin, D; Wathen, AJ, Stopping criteria for iterations in finite element methods, Numer. Math., 99, 381-410, (2005) · Zbl 1069.65124 · doi:10.1007/s00211-004-0568-z
[11] Bank, RE; Rose, DJ, Analysis of a multilevel iterative method for nonlinear finite element equations, Math. Comp., 39, 453-465, (1982) · Zbl 0496.65060 · doi:10.2307/2007324
[12] Bebendorf, M, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen, 22, 751-756, (2003) · Zbl 1057.26011 · doi:10.4171/ZAA/1170
[13] Becker, R; Johnson, C; Rannacher, R, Adaptive error control for multigrid finite element methods, Computing, 55, 271-288, (1995) · Zbl 0848.65074 · doi:10.1007/BF02238483
[14] Braess, D; Schöberl, J, Equilibrated residual error estimator for edge elements, Math. Comp., 77, 651-672, (2008) · Zbl 1135.65041 · doi:10.1090/S0025-5718-07-02080-7
[15] Brezzi, F; Fortin, M, Mixed and hybrid finite element methods, (1991), New York · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[16] Brooks, RJ; Corey, AT, Hydraulic properties of porous media, (1964), Fort Collins
[17] Brown, PN; Saad, Y, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim., 4, 297-330, (1994) · Zbl 0814.65048 · doi:10.1137/0804017
[18] Cancès, C; Gallouët, T; Porretta, A, Two-phase flows involving capillary barriers in heterogeneous porous media, Interfaces and Free Boundaries, 11, 239-258, (2009) · Zbl 1178.35196 · doi:10.4171/IFB/210
[19] Cancès, C., Pop, I.S., Vohralík, M.: An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Math. Comp. (2013). doi:10.1090/S0025-5718-2013-02723-8 · Zbl 0653.65044
[20] Chaillou, AL; Suri, M, Computable error estimators for the approximation of nonlinear problems by linearized models, Comput. Methods Appl. Mech. Eng., 196, 210-224, (2006) · Zbl 1120.74809 · doi:10.1016/j.cma.2006.03.008
[21] Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation. In: Studies in Mathematics and Its Applications, vol. 17. North-Holland, Amsterdam (1986) · Zbl 1078.65097
[22] Chen, Y; Liu, W, A posteriori error estimates of mixed methods for miscible displacement problems, Int. J. Numer. Methods Eng., 73, 331-343, (2008) · Zbl 1159.76021 · doi:10.1002/nme.2075
[23] Chen, Z, Degenerate two-phase incompressible flow. I. existence, uniqueness and regularity of a weak solution, J. Differ. Equ., 171, 203-232, (2001) · Zbl 0991.35047 · doi:10.1006/jdeq.2000.3848
[24] Chen, Z, Degenerate two-phase incompressible flow. II. regularity, stability and stabilization, J. Differ. Equ., 186, 345-376, (2002) · Zbl 1073.35129 · doi:10.1016/S0022-0396(02)00027-X
[25] Chen, Z; Ewing, RE, Degenerate two-phase incompressible flow. III. sharp error estimates, Numer. Math., 90, 215-240, (2001) · Zbl 1097.76064 · doi:10.1007/s002110100291
[26] Chen, Z., Ewing, R.E.: Degenerate two-phase incompressible flow. IV. Local refinement and domain decomposition. J. Sci. Comput. 18(3), 2003. doi:10.1023/A:1022673427893 · Zbl 1125.65098
[27] Chueh, CC; Secanell, M; Bangerth, W; Djilali, N, Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media, Comput. Fluids, 39, 1585-1596, (2010) · Zbl 1245.76047 · doi:10.1016/j.compfluid.2010.05.011
[28] Destuynder, P; Métivet, B, Explicit error bounds in a conforming finite element method, Math. Comp., 68, 1379-1396, (1999) · Zbl 0929.65095 · doi:10.1090/S0025-5718-99-01093-5
[29] Deuflhard, P, Newton methods for nonlinear problems: affine invariance and adaptive algorithms, (2004), Berlin · Zbl 1056.65051
[30] Deuflhard, P; Weiser, M, Global inexact Newton multi-level FEM for nonlinear elliptic problems, 71-89, (1998), Berlin · Zbl 0926.65135 · doi:10.1007/978-3-642-58734-4_4
[31] Pietro, DA; Vohralík, M; Widmer, C; Fořt, J (ed.); Fürst, J (ed.); Halama, J (ed.); Herbin, R (ed.); Hubert, F (ed.), An a posteriori error 1282 estimator for a finite volume discretization of the two-phase flow, 341-349, (2011), Berlin · Zbl 1246.65162 · doi:10.1007/978-3-642-20671-9_85
[32] Dolejší, V; Ern, A; Vohralík, M, A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal., 51, 773-793, (2013) · Zbl 1278.65138 · doi:10.1137/110859282
[33] Douglas, J; Ewing, RE; Wheeler, MF, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér., 17, 17-33, (1983) · Zbl 0516.76094
[34] Duijn, CJ; Mikelić, A; Pop, IS, Effective equations for two-phase flow with trapping on the micro scale, SIAM J. Appl. Math., 62, 1531-1568, (2002) · Zbl 1060.76097 · doi:10.1137/S0036139901385564
[35] Eisenstat, SC; Walker, HF, Globally convergent inexact Newton methods, SIAM J. Optim., 4, 393-422, (1994) · Zbl 0814.65049 · doi:10.1137/0804022
[36] Eisenstat, SC; Walker, HF, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 16-32, (1996) · Zbl 0845.65021 · doi:10.1137/0917003
[37] Alaoui, L; Ern, A; Vohralík, M, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Eng., 200, 2782-2795, (2011) · Zbl 1230.65118 · doi:10.1016/j.cma.2010.03.024
[38] Epshteyn, Y; Rivière, B, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow, J. Comput. Appl. Math., 225, 487-509, (2009) · Zbl 1157.76024 · doi:10.1016/j.cam.2008.08.026
[39] Ern, A; Mozolevski, I; Schuh, L, Accurate velocity reconstruction for discontinuous Galerkin approximations of two-phase porous media flows, C. R. Math. Acad. Sci. Paris, 347, 551-554, (2009) · Zbl 1162.76027 · doi:10.1016/j.crma.2009.02.011
[40] Ern, A; Mozolevski, I; Schuh, L, Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures, Comput. Methods Appl. Mech. Eng., 199, 1491-1501, (2010) · Zbl 1231.76143 · doi:10.1016/j.cma.2009.12.014
[41] Ern, A; Nicaise, S; Vohralík, M, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems, C. R. Math. Acad. Sci. Paris, 345, 709-712, (2007) · Zbl 1129.65085 · doi:10.1016/j.crma.2007.10.036
[42] Ern, A; Vohralík, M, A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal., 48, 198-223, (2010) · Zbl 1215.65152 · doi:10.1137/090759008
[43] Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761-A1791 (2013). doi:10.1137/120896918 · Zbl 1362.65056
[44] Eymard, R; Gallouët, T; Herbin, R, Finite volume approximation of elliptic problems and convergence of an approximate gradient, Appl. Numer. Math., 37, 31-53, (2001) · Zbl 0982.65122 · doi:10.1016/S0168-9274(00)00024-6
[45] Eymard, R; Herbin, R; Michel, A, Mathematical study of a petroleum-engineering scheme, M2AN Math. Model. Numer. Anal., 37, 937-972, (2003) · Zbl 1118.76355 · doi:10.1051/m2an:2003062
[46] Han, W, A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations, Math. Methods Appl. Sci., 17, 487-508, (1994) · Zbl 0799.35082 · doi:10.1002/mma.1670170702
[47] Hilhorst, D; Vohralík, M, A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Eng., 200, 597-613, (2011) · Zbl 1225.76212 · doi:10.1016/j.cma.2010.08.017
[48] Huber, R; Helmig, R, Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Comput. Geosci., 4, 141-164, (2000) · Zbl 0973.76059 · doi:10.1023/A:1011559916309
[49] Jiránek, P; Strakoš, Z; Vohralík, M, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32, 1567-1590, (2010) · Zbl 1215.65168 · doi:10.1137/08073706X
[50] Karakashian, OA; Pascal, F, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41, 2374-2399, (2003) · Zbl 1058.65120 · doi:10.1137/S0036142902405217
[51] Khalil, Z; Saad, M, Degenerate two-phase compressible immiscible flow in porous media: the case where the density of each phase depends on its own pressure, Math. Comput. Simul., 81, 2225-2233, (2011) · Zbl 1419.76614 · doi:10.1016/j.matcom.2010.12.012
[52] Kim, KY, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, Appl. Numer. Math., 57, 1065-1080, (2007) · Zbl 1125.65098 · doi:10.1016/j.apnum.2006.09.010
[53] Klieber, W; Rivière, B, Adaptive simulations of two-phase flow by discontinuous Galerkin methods, Comput. Methods Appl. Mech. Eng., 196, 404-419, (2006) · Zbl 1120.76327 · doi:10.1016/j.cma.2006.05.007
[54] Kröner, D; Luckhaus, S, Flow of oil and water in a porous medium, J. Diff. Equat., 55, 276-288, (1984) · Zbl 0509.35048 · doi:10.1016/0022-0396(84)90084-6
[55] Lacroix, S; Vassilevski, YV; Wheeler, J; Wheeler, MF, Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25, 905-926, (2003) · Zbl 1163.65310 · doi:10.1137/S106482750240443X
[56] Lacroix, S; Vassilevski, YV; Wheeler, MF, Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS), Numer. Linear Algebra Appl., 8, 537-549, (2001) · Zbl 1071.76583 · doi:10.1002/nla.264
[57] Luce, R; Wohlmuth, BI, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42, 1394-1414, (2004) · Zbl 1078.65097 · doi:10.1137/S0036142903433790
[58] Makridakis, C; Nochetto, RH, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41, 1585-1594, (2003) · Zbl 1052.65088 · doi:10.1137/S0036142902406314
[59] Moret, I, A Kantorovich-type theorem for inexact Newton methods, Numer. Funct. Anal. Optim., 10, 351-365, (1989) · Zbl 0653.65044 · doi:10.1080/01630568908816307
[60] Otto, F, \(L\)\^{}{1}-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differ. Equ., 131, 20-38, (1996) · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[61] Patera, AT; Rønquist, EM, A general output bound result: application to discretization and iteration error estimation and control, Math. Models Methods Appl. Sci., 11, 685-712, (2001) · Zbl 1012.65110 · doi:10.1142/S0218202501001057
[62] Payne, LE; Weinberger, HF, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal., 5, 286-292, (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[63] Peszyńska, M; Wheeler, MF; Yotov, I, Mortar upscaling for multiphase flow in porous media, Comput. Geosci., 6, 73-100, (2002) · Zbl 1056.76048 · doi:10.1023/A:1016529113809
[64] Picasso, M, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Eng., 167, 223-237, (1998) · Zbl 0935.65105 · doi:10.1016/S0045-7825(98)00121-2
[65] Repin, SI, Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 121-133, (2002) · Zbl 1221.65244
[66] Saad, M; Zhang, H, Front tracking for two-phase flow in reservoir simulation by adaptive mesh, Numer. Methods Partial Differential Equations, 13, 673-697, (1997) · Zbl 0895.76061 · doi:10.1002/(SICI)1098-2426(199711)13:6<673::AID-NUM5>3.0.CO;2-O
[67] Saad, Y; Schultz, MH, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869, (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[68] Verfürth, R, A posteriori error estimates for finite element discretizations of the heat equation, Calcolo, 40, 195-212, (2003) · Zbl 1168.65418 · doi:10.1007/s10092-003-0073-2
[69] Verfürth, R, Robust a posteriori error estimates for nonstationary convection-diffusion equations, SIAM J. Numer. Anal., 43, 1783-1802, (2005) · Zbl 1099.65077 · doi:10.1137/040604273
[70] Vohralík, M, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math., 111, 121-158, (2008) · Zbl 1160.65059 · doi:10.1007/s00211-008-0168-4
[71] Vohralík, M, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput., 46, 397-438, (2011) · Zbl 1270.65064 · doi:10.1007/s10915-010-9410-1
[72] Wallis, J., Kendall, R., Little, T.: Constrained residual acceleration of conjugate residual methods. SPE Prod. Eng., 415-428 (1985). Paper SPE 13536-MS. doi:10.2118/13536-MS · Zbl 1151.65083
[73] Wheeler, MF; Wildey, T; Xue, G, Efficient algorithms for multiscale modeling in porous media, Numer. Linear Algebra Appl., 17, 771-785, (2010) · Zbl 1240.76024 · doi:10.1002/nla.742
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.