×

Variational formulation and efficient implementation for solving the tempered fractional problems. (English) Zbl 1407.82055

Summary: Because of the finiteness of the life span and boundedness of the physical space, the more reasonable or physical choice is the tempered power-law instead of pure power-law for the CTRW model in characterizing the waiting time and jump length of the motion of particles. This paper focuses on providing the variational formulation and efficient implementation for solving the corresponding deterministic/macroscopic models, including the space tempered fractional equation and time tempered fractional equation. The convergence, numerical stability, and a series of variational equalities are theoretically proved. And the theoretical results are confirmed by numerical experiments.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
35Q82 PDEs in connection with statistical mechanics
35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs

References:

[1] R.Metzler, J.Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. vol. 339 (2000) pp. 1-77. · Zbl 0984.82032
[2] R. N.Mantegna, H. E.Stanley, Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight, Phys. Rev. Lett. vol. 73 (1994) pp. 2946-2949. · Zbl 1020.82610
[3] I. M.Sokolov, A. V.Chechkin, J.Klafter, Fractional diffusion equation for a power‐law‐truncated Lévy process, Phys. A vol. 336 (2004) pp. 245-251.
[4] A. V.Chechkin, V. Y.Gonchar, J.Klafter, R.Metzler, Natural cutoff in Lévy flights caused by dissipative nonlinearity, Phys. Rev. E vol. 72 (2005) p. 010101.
[5] A.Cartea, D.delCastillo‐Negrete, Fluid limit of the continuous‐time random walk with general Lévy jump distribution functions, Phys. Rev. E vol. 76 (2007) p. 041105.
[6] M. M.Meerschaert, Y.Zhang, B.Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. vol. 35 (2009) p. L17403.
[7] B.Baeumera, M. M.Meerschaert, Tempered stable Lévy motion and transient super‐diffusion, J. Comput. Appl. Math. vol. 233 (2010) pp. 2438-2448. · Zbl 1423.60079
[8] F.Sabzikar, M. M.Meerschaerta, J. H.Chen, Tempered fractional calculus, J. Comput. Phys. vol. 293 (2015) pp. 14-28. · Zbl 1349.26017
[9] M. M.Meerschaert, C.Tadjeran, Finite difference approximations for fractional advection‐dispersion flow equations, J. Comput. Appl. Math. vol. 172 (2004) pp. 65-77. · Zbl 1126.76346
[10] C.Yin, Y. Q.Chen, S. M.Zhong, Fractional‐order sliding mode based extremum seeking control of a class of nonlinear systems, Automatica vol. 50 (2014) pp. 3173-3181. · Zbl 1309.93041
[11] X.Zhao, Z. Z.Sun, G. E.Karniadakis, Second‐order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys. vol. 293 (2015) pp. 184-200. · Zbl 1349.65092
[12] W. H.Deng, Finite element method for the space and time fractional Fokker‐Planck equation, SIAM J. Numer. Anal. vol. 47 (2008) pp. 204-226. · Zbl 1416.65344
[13] W. H.Deng, J. S.Hesthaven, Local discontinuous Galerkin methods for fractinal diffusion equations, ESAIM Math. Model. Numer. Anal. vol. 47 (2013) pp. 1845-1864. · Zbl 1282.35400
[14] V. J.Ervin, J. P.Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations vol. 22 (2005) pp. 558-576. · Zbl 1095.65118
[15] V. J.Ervin, N.Heuer, J. P.Roop, Variational soloution of fractional advection dispersion equations on bounded domains in \(\mathbb{R}^d\), Numer. Methods Partial Differential Equations vol. 23 (2007) pp. 256-281. · Zbl 1117.65169
[16] B. T.Jin, R.Lazarov, J.Pasciak, W.Runadell, Variational formulation of problems involving fractional order differential operators, Math. Comput. vol. 84 (2015) pp. 2665-2700. · Zbl 1321.65127
[17] K.Mustapha, B.Abdallah, K.Furati, A discontinuous Petrov‐Galerkin method for time‐fractional diffusion equations, SIAM J. Numer. Anal. vol. 52 (2014) pp. 2512-2529. · Zbl 1323.65109
[18] H.Wang, D. P.Yang, Wellposedness of variable‐coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal. vol. 51 (2013) pp. 1088-1107. · Zbl 1277.65059
[19] X.Li, C.Xu, A space‐time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. vol. 47 (2009) pp. 2108-2131. · Zbl 1193.35243
[20] X.Li, C.Xu, Existence and uniqueness of the weak solution of the space‐time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. vol. 8 (2010) pp. 1016-1051. · Zbl 1364.35424
[21] M.Zayernouri, G. E.Karniadakis, Fractional Sturm‐Liouville eigen‐problems: theory and numerical approximation, J. Comput. Phys. vol. 252 (2013) pp. 495-517. · Zbl 1349.34095
[22] O.Defterli, M.DÉlia, Q.Du, M.Gunzburger, R.Lehoucq, M. M.Meerschaert, Fractional diffusion on bounded domains, Fract. Calc. Appl. Anal. vol. 18 (2015) pp. 342-360. · Zbl 1488.35557
[23] I.Podlubny, Fractional differential equations, Academic Press, New York, 1999. · Zbl 0918.34010
[24] S.Carmi, L.Turgeman, E.Barkai, On distributions of functionals of anomalous diffusion paths, J. Stat. Phys. vol. 141 (2010) pp. 1071-1092. · Zbl 1205.82079
[25] C.Li, W. H.Deng, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math. vol. 42 (2016) pp. 543-572. · Zbl 1347.65136
[26] E.Hanert, C.Piret, A Chebyshev pseudospectral method to solve the space‐time tempered fractinal diffusion equation, SIAM J. Sci. Comput. vol. 36 (2015) pp. A1797-A1812. · Zbl 1302.35403
[27] M.Zayernourt, M.Ainsworkth, G. E.Karniadakis, Tempered fractional Sturm‐Liouville eigenproblems, SIAM J. Sci. Comput. vol. 37 (2015), pp. A1777-A1800. · Zbl 1323.34012
[28] Q. W.Xu, J. S.Hesthaven, Discontinuous Galerkin method for fractional convection‐diffusion equations, SIAM J. Numer. Anal. vol. 52 (2014) pp. 405-423. · Zbl 1297.26018
[29] W. H.Deng, M. H.Chen, E.Barkai, Numerical algorithms for the forward and backward fractional Feynman‐Kac equations, J. Sci. Comput. vol. 62 (2015) pp. 718-746. · Zbl 1335.65069
[30] M. H.Chen, W. H.Deng, Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal. vol. 49 (2015) pp. 373-394. · Zbl 1314.26007
[31] P.Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1985. · Zbl 0695.35060
[32] W.McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[33] I.Babska, Error‐bounds for finite element method, Numer. Math. vol. 16 (1971) pp. 322-333. · Zbl 0214.42001
[34] J. C.Xu, L.Zikatanov, Some observations on Babuka and Brezzi theories, Numer. Math. vol. 94 (2003) pp. 195-202. · Zbl 1028.65115
[35] S. C.Brenner, L. R.Scott, The mathematical theory of finite element methods, Springer‐Verlag, New York, 1994. · Zbl 0804.65101
[36] H. F.Chan, X. Q.Jin, An introduction to iterative Toeplitz solvers, SIAM, Philadelphia, PA, 2007. · Zbl 1146.65028
[37] L.Zhang, H.W.Sun, H. K.Pang, Fast numerical solution for fractional diffusion equations by exponential quadrature rule, J. Comput. Phys. vol. 299 (2015) pp. 30-143. · Zbl 1352.65304
[38] T.Schmelzer, L. N.Trefethen, Computing the Gamma function using contour integrals and rational approximations, SIAM J. Numer. Anal. vol. 45 (2007) pp. 558-571. · Zbl 1153.65026
[39] L. N.Trefethen, J. A. C.Weideman, T.Schemelzer, Talbot quadratures and rational approximations, BIT vol. 46 (2006) pp. 653-670. · Zbl 1103.65030
[40] V.Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer‐Verlag, Berlin, 2006. · Zbl 1105.65102
[41] L. N.Trefethen, J. A. C.Weideman, The exponentially convergent trapezoidal rule, SIAM Rev. vol 56 (2014) pp. 385-458. · Zbl 1307.65031
[42] R.Garrappa, Numerical evaluation of two and three parameter Mittag‐Leffler functions, SIAM J. Numer. Anal. vol. 53 (2015) pp. 1350-1369. · Zbl 1331.33043
[43] N.Hale, N. J.Higham, L. N.Trefethen, Computing \(A \operatorname{\alpha} , \log ( A )\), and related matrix functions by contour integrals, SIAM J. Numer. Anal. vol. 46 (2008) pp. 2505-2523. · Zbl 1176.65053
[44] K.Burrage, N.Hale, D.Kay, An efficient implementation of an implicit fem scheme for fractional‐in‐space reaction‐diffusion equations, SIAM J. Sci. Comput. vol. 34 (2012) pp. A2145-A2172. · Zbl 1253.65146
[45] Q.Yang, I.Turner, F.Liu, M.Llić, Novel numerical methods for solving the time‐space fractional diffusion equation in 2D, SIAM J. Sci. Comput. vol. 33 (2011) pp. 1159-1180. · Zbl 1229.35315
[46] Q.Yang, F.Liu, I.Turner, Nummerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. vol. 34 (2010) pp. 200-218. · Zbl 1185.65200
[47] R.Garrappa, The Mittag‐Leffler function, MATLAB Central File Exchange (2015), file ID: 48154.
[48] A.Ern, J. L.Guermond, Theory and practice of finite elements, Springer‐Verlag, New York, 2004. · Zbl 1059.65103
[49] A.Cohen, “Wavelet methods in numerical analysis,” Handbook of numerical analysis, vol. VII, P. G.Ciarlet (ed.) and J. L.Lions (ed.) (editors), Elsevier, North‐Holland, 2000, p. 417-711. · Zbl 0976.65124
[50] K.Urban, Wavelet methods for elliptic partial differential equations, Oxford University Press, Oxford, 2009. · Zbl 1158.65002
[51] H.Pang, H.Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys. vol. 231 (2012) pp. 693-703. · Zbl 1243.65117
[52] H.Wang, K.Wang, T.Sircar, A direct \(\mathcal{O} ( N \text{log}^2 N )\) finite difference method for fractional diffusion equations, J. Comput. Phys. vol. 229 (2010) pp. 8095-8104. · Zbl 1198.65176
[53] T. A.Driscoll, N.Hale, L. N.Trefethen (editors), Chebfun guide, Pafnuty Publications, Oxford, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.