×

Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. (English) Zbl 1398.65314

Summary: Tempered fractional diffusion equations (TFDEs) involving tempered fractional derivatives on the whole space were first introduced in [F. Sabzikar et al., J. Comput. Phys. 293, 14–28 (2015; Zbl 1349.26017)], but only the finite-difference approximation to a truncated problem on a finite interval was proposed therein. In this paper, we rigorously show the well-posedness of the models in [loc. cit.], and tackle them directly in infinite domains by using generalized Laguerre functions (GLFs) as basis functions. We define a family of GLFs and derive some useful formulas of tempered fractional integrals/derivatives. Moreover, we establish the related GLF-approximation results. In addition, we provide ample numerical evidences to demonstrate the efficiency and “tempered” effect of the underlying solutions of TFDEs.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
41A05 Interpolation in approximation theory

Citations:

Zbl 1349.26017

References:

[1] Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972) · Zbl 0543.33001
[2] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001
[3] Baeumer, B., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543-1550 (2001) · doi:10.1029/2000WR900409
[4] Baeumer, B., Kovács, M., Meerschaert, M.M.: Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69(7), 2281-2297 (2007) · Zbl 1296.92195 · doi:10.1007/s11538-007-9220-2
[5] Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305-333 (2002) · doi:10.1086/338705
[6] Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603-1638 (2016) · Zbl 1335.65066 · doi:10.1090/mcom3035
[7] Cushman, J.H., Ginn, T.R.: Fractional advection-dispersion equation: a classical mass balance with convolution-fickian flux. Water Resour. Res. 36(12), 3763-3766 (2000) · doi:10.1029/2000WR900261
[8] Deng, Z.Q., Bengtsson, L., Singh, V.P.: Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 6(5), 451-475 (2006) · doi:10.1007/s10652-006-9004-5
[9] Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Math, vol. 2004. Springer, Berlin (2010) · Zbl 1323.34012
[10] Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. Math. Financ. 171-180 (2001) · Zbl 1138.91444
[11] Huang, C., Song, Q., Zhang, Z.: Spectral collocation method for substantial fractional differential equations. arXiv:1408.5997 [math.NA] (2014)
[12] Jeon, J.H., Monne, H.M.S., Javanainen, M., Metzler, R.: Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109(18), 188103 (2012) · doi:10.1103/PhysRevLett.109.188103
[13] Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543-572 (2016) · Zbl 1347.65136 · doi:10.1007/s10444-015-9434-z
[14] Magdziarz, M., Weron, A., Weron, K.: Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. Phys. Rev. E 75(1), 016708 (2007) · Zbl 1123.60045 · doi:10.1103/PhysRevE.75.016708
[15] Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, L17403 (2008). doi:10.1029/2008GL034899
[16] Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. J. Phys. A Stat. Mech. Appl. 370(1), 114-118 (2006) · doi:10.1016/j.physa.2006.04.034
[17] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[18] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37(31), R161 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[19] Piryatinska, A., Saichev, A., Woyczynski, W.: Models of anomalous diffusion: the subdiffusive case. J. Phys. A Stat. Mech. A. 349(3), 375-420 (2005) · doi:10.1016/j.physa.2004.11.003
[20] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press Inc., San Diego (1999) · Zbl 0924.34008
[21] Popov, G.Y.: Concentration of elastic stresses near punches, cuts, thin inclusions and supports. Nauka Mosc. 1, 982 (1982) · Zbl 0543.73017
[22] Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14-28 (2015) · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[23] Samko, S.G., Kilbas, A.A., Maričev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publ., Philadelphia (1993) · Zbl 0818.26003
[24] Scalas, E.: Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, pp. 3-16. Springer, Berlin (2006) · Zbl 1183.91135
[25] Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Series in Computational Mathematics, vol. 41. Springer, Berlin (2011) · Zbl 1227.65117
[26] Stein, E.M., Weiss, G.L.: Introduction to Fourier Analysis on Euclidean Spaces, vol. 1. Princeton University Press, Princeton (1971) · Zbl 0232.42007
[27] Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Coll. Publ., (1975) · Zbl 0305.42011
[28] Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm-Liouville Eigen-problems. SIAM J. Sci. Comput. 37(4), A1777-A1800 (2015) · Zbl 1323.34012 · doi:10.1137/140985536
[29] Zhang, C., Guo, B.Y.: Domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations on unbounded domains. J. Sci. Comput. 53(2), 451-480 (2012) · Zbl 1273.65183 · doi:10.1007/s10915-012-9581-z
[30] Zhang, Y., Meerschaert, M.M.: Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 47, W08601 (2011). doi:10.1029/2010WR010102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.