×

The perturbation algorithm for the realization of a four-layer semi-discrete solution scheme of an abstract evolutionary problem. (English) Zbl 1453.65119

Summary: In the present paper, we use the perturbation algorithm to reduce a purely implicit four-layer semi-discrete scheme for an abstract evolutionary equation to two-layer schemes. An approximate solution of the original problem is constructed using the solutions of these schemes. Estimates of the approximate solution error are proved in a Hilbert space.

MSC:

65J08 Numerical solutions to abstract evolution equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] V. I. Agoshkov and D. V. Gulua, A Perturbation Algorithm for Realization of Finite-Dimensional Realization Problems (in Russian), Akad. Nauk SSSR, Moscow, 1990.; Agoshkov, V. I.; Gulua, D. V., A Perturbation Algorithm for Realization of Finite-Dimensional Realization Problems (1990)
[2] A. Ashyralyev and P. E. Sobolevskiĭ, New Difference Schemes for Partial Differential Equations, Oper. Theory Adv. Appl. 148, Birkhäuser, Basel, 2004.; Ashyralyev, A.; Sobolevskiĭ, P. E., New Difference Schemes for Partial Differential Equations (2004) · Zbl 1060.65055
[3] A. Ashyralyev and P. E. Sobolevskiĭ, Well-Posedness of Parabolic Difference Equations, Oper. Theory Adv. Appl. 69, Birkhäuser, Basel, 1994.; Ashyralyev, A.; Sobolevskiĭ, P. E., Well-Posedness of Parabolic Difference Equations (1994) · Zbl 1077.39015
[4] N. Y. Bakaev, Linear Discrete Parabolic Problems, North-Holland Math. Stud. 203, Elsevier Science, Amsterdam, 2006.; Bakaev, N. Y., Linear Discrete Parabolic Problems (2006) · Zbl 1096.65094
[5] M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257-276.; Crouzeix, M., Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math., 35, 3, 257-276 (1980) · Zbl 0419.65057
[6] M. Crouzeix and P.-A. Raviart, Approximation des équations d’évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci. Paris Sér. A 28 (1976), no. 6, 367-370.; Crouzeix, M.; Raviart, P.-A., Approximation des équations d’évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci. Paris Sér. A, 28, 6, 367-370 (1976) · Zbl 0361.65064
[7] S. K. Godunov and V. S. Ryaben’kiĭ, Difference Schemes. Introduction to the Theory. Second Edition, Revised and Augmented (in Russian), Izdat. “Nauka”, Moscow, 1977.; Godunov, S. K.; Ryaben’kiĭ, V. S., Difference Schemes. Introduction to the Theory. Second Edition, Revised and Augmented (1977)
[8] N. N. Janenko, The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics (in Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1967.; Janenko, N. N., The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics (1967) · Zbl 0183.18201
[9] L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2nd ed. (in Russian), Izdat. “Nauka”, Moscow, 1977.; Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1977) · Zbl 0555.46001
[10] T. Kato and T. Kato, Perturbation Theory for Linear Operators (in Russian), Izdat. “Mir”, Moscow, 1972.; Kato, T.; Kato, T., Perturbation Theory for Linear Operators (1972) · Zbl 0247.47009
[11] G. I. Marchuk, Methods of Computational Mathematics (in Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973.; Marchuk, G. I., Methods of Computational Mathematics (1973) · Zbl 0278.65099
[12] G. I. Marchuk, V. I. Agoshkov and V. P. Shutyaev, Adjoint Equations and Perturbation Methods in Nonlinear Problems of Mathematical Physics (in Russian), VO “Nauka”, Moscow, 1993.; Marchuk, G. I.; Agoshkov, V. I.; Shutyaev, V. P., Adjoint Equations and Perturbation Methods in Nonlinear Problems of Mathematical Physics (1993) · Zbl 0869.47036
[13] G. I. Marchuk and V. V. Shaĭdurov, Difference Methods and Their Extrapolations, Appl. Math. (New York) 19, Springer, New York, 1983.; Marchuk, G. I.; Shaĭdurov, V. V., Difference Methods and Their Extrapolations (1983) · Zbl 0511.65076
[14] V. Pereyra, On improving an approximate solution of a functional equation by deferred corrections, Numer. Math. 8 (1966), 376-391.; Pereyra, V., On improving an approximate solution of a functional equation by deferred corrections, Numer. Math., 8, 376-391 (1966) · Zbl 0173.18103
[15] V. Pereyra, Accelerating the convergence of discretization algorithms, SIAM J. Numer. Anal. 4 (1967), 508-533.; Pereyra, V., Accelerating the convergence of discretization algorithms, SIAM J. Numer. Anal., 4, 508-533 (1967) · Zbl 0265.65043
[16] S. Piskarev, Differential Equations in Banach Space and Their Aproximation (in Russian), Moscow State University, Moscow, 2005.; Piskarev, S., Differential Equations in Banach Space and Their Aproximation (2005)
[17] S. Piskarev and H. Zwart, Crank-Nicolson scheme for abstract linear systems, Numer. Funct. Anal. Optim. 28 (2007), no. 5-6, 717-736.; Piskarev, S.; Zwart, H., Crank-Nicolson scheme for abstract linear systems, Numer. Funct. Anal. Optim., 28, 5-6, 717-736 (2007) · Zbl 1151.65048
[18] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems 2nd ed., Interscience Tracts Pure Appl. Math. 4, John Wiley & Sons, New York, 1967.; Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967) · Zbl 0155.47502
[19] D. L. Rogava, Semidiscrete Schemes for Operator Differential Equations (in Russian), Izdatel’stvo “Tekhnicheskogo Universitet”, Tbilisi, 1995.; Rogava, D. L., Semidiscrete Schemes for Operator Differential Equations (1995)
[20] D. L. Rogava and D. V. Gulua, A perturbation algorithm for realizing finite-difference approximation of an abstract evolution problem, and an explicit error estimate of the approximate solution, Dokl. Akad. Nauk 456 (2014), no. 4, 405-407.; Rogava, D. L.; Gulua, D. V., A perturbation algorithm for realizing finite-difference approximation of an abstract evolution problem, and an explicit error estimate of the approximate solution, Dokl. Akad. Nauk, 456, 4, 405-407 (2014) · Zbl 1303.65039
[21] J. Rogava and D. Gulua, Reduction of a three-layer semi-discrete scheme for an abstract parabolic equation to two-layer schemes. Explicit estimates for the approximate solution error (in Russian), Sovrem. Mat. Prilozh. 89 (2013); translation in J. Math. Sci. (N.Y.) 206 (2015), no. 4, 424-444.; Rogava, J.; Gulua, D., Reduction of a three-layer semi-discrete scheme for an abstract parabolic equation to two-layer schemes. Explicit estimates for the approximate solution error, Sovrem. Mat. Prilozh. (2013) · Zbl 1320.65133
[22] E. Rothe, Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle, Math. Ann. 104 (1931), no. 1, 340-354.; Rothe, E., Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle, Math. Ann., 104, 1, 340-354 (1931) · JFM 57.0587.01
[23] A. A. Samarskiĭ, Theory of Difference Schemes (in Russian), Izdat. “Nauka”, Moscow, 1977.; Samarskiĭ, A. A., Theory of Difference Schemes (1977) · Zbl 0368.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.