×

Reduction of a three-layer semi-discrete scheme for an abstract parabolic equation to two-layer schemes. Explicit estimates for the approximate solution error. (English. Russian original) Zbl 1320.65133

J. Math. Sci., New York 206, No. 4, 424-444 (2015); translation from Sovrem. Mat. Prilozh. 89 (2013).
Summary: We consider a purely implicit three-layer semi-discrete approximation scheme of second order for an approximate solution of the Cauchy problem for an abstract parabolic equation. Using the perturbation algorithm, we reduced this scheme to two two-layer schemes. The solutions of these schemes are used for the construction of an approximate solution of the initial problem. Explicit estimates for the approximate solution error are proved using the properties of a semi-group. To illustrate the generality of the perturbation algorithm when it is applied to difference schemes, a four-layer scheme reduced to two-layer schemes is also considered.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K90 Abstract parabolic equations
65J08 Numerical solutions to abstract evolution equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] V. I. Agoshkov and D. V. Gulua, A perturbation algorithm for realization of finite-dimensional realization problems, Comput. Math. Depart. USSR Acad. Sci., Preprint No. 253, oscow (1990).
[2] H. A. Alibekov and P. E. Sobolevskii, “Stability of difference schemes for parabolic equations,” Dokl. Akad. Nauk SSSR, 232, No. 4, 737-740 (1977).
[3] M. Crouzeix, “Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques,” Numer. Math., 35, No. 3, 257-276 (1980). · Zbl 0419.65057 · doi:10.1007/BF01396412
[4] M. Crouzeix and P.-A. Raviart, “Approximation des équations d’évolution linéaires par des méthodes à pas multiples,” C. R. Acad. Sci. Paris, Sér. A-B, 28, No. 6, Aiv, A367-A370 (1976). · Zbl 0361.65064
[5] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York (1957).
[6] S. K. Godunov and V. S. Ryaben’kii, Difference Schemes [in Russian], Nauka, Moscow (1973).
[7] D. V. Gulua, A perturbation algoritm for realizations of finite-dimensional approximations of some nonstationary and elliptic boundary-value problems [in Russian], Ph.D. Thesis, Tbilisi (1995).
[8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1966). · Zbl 0148.12601 · doi:10.1007/978-3-662-12678-3
[9] G. I. Marchuk, Methods of Computational Mathematics [in Russian], Nauka, Moscow (1977).
[10] G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods [in Russian], Nauka, Moscow (1981). · Zbl 0642.65037
[11] G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Methods in Nonlinear Problems of Mathematical Physics [in Russian], Nauka, Moscow (1993). · Zbl 0869.47036
[12] G. I. Marchuk and V. V. Shaidurov, Difference Methods and Their Extrapolations, Springer-Verlag, New York (1983). · Zbl 0511.65076 · doi:10.1007/978-1-4613-8224-9
[13] S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).
[14] V. Pereyra, “On improving an approximate solution of a functional equation by deferred corrections,” Numer. Math., 8, 376-391 (1966). · Zbl 0173.18103 · doi:10.1007/BF02162981
[15] V. Pereyra, “Accelerating the convergence of discretization algorithms,” SIAM J. Numer. Anal., 4, 508-533 (1967). · Zbl 0265.65043 · doi:10.1137/0704046
[16] A. E. Polichka and P. E. Sobolevski, “On the Rothe method of approximate solution of the Cauchy problem for a differential equation in the Banach space with a variable unbounded operator,” Differ. Uravn., 12, 1693-1704 (1976). · Zbl 0349.34047
[17] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience, New York-London-Sydney (1967). · Zbl 0155.47502
[18] J. L. Rogava, Semidiscrete Schemes for Operator Differential Equations [in Russian], Technical Univ. Press, Tbilisi (1995).
[19] J. Rogava and M. Tsiklauri, “Higher-order accuracy decomposition schemes for evolution problem,” Lect. Notes TICMI, 7 (2006). · Zbl 1182.65151
[20] E. Rothe, “Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle,” Math. Ann., 104, No. 1, 340-354 (1931). · Zbl 0001.06203 · doi:10.1007/BF01457942
[21] M.-N. Le Roux, “Semidiscretization in time for parabolic problems,” Math. Comput., 33, No. 147, 919-931 (1979). · Zbl 0417.65049 · doi:10.2307/2006068
[22] A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977). · Zbl 0368.65031
[23] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey (1973). · Zbl 0356.65096
[24] N. N. Yanenko, The Method of Fractional Steps of Solution of Multi-Dimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1967). · Zbl 0183.18201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.