×

Compact schemes for multiscale flows with cell-centered finite difference method. (English) Zbl 1452.76155

Summary: High-order compact interpolation schemes appropriate for multiscale flows are studied within a cell-centered finite difference method (CCFDM) framework where the robustness of high-order schemes on curvilinear grids can be greatly enhanced due to the satisfaction of geometric conservation law. Two types of compact interpolations are mainly developed in this paper for shock-free flows and shock-embedded flows respectively. The present compact schemes are verified to be superior over the explicit counterparts with same orders in terms of the spectral characteristics. Regarding the shock-free flows, low-dissipation low-dispersion properties are achieved by the spectral optimization. Three optimized compact schemes (Opt4, Opt6 and Opt8) are further validated to be attractive for shock-free problems by carrying out benchmarks from computational aeroacoustics workshops and two typical turbulence cases: Tayler-Green vortex and decaying isotropic turbulence. Regarding high-speed flows in the presence of shock waves, the shock-capturing capability is realized by extending the weighting technique to the compact interpolations. The criteria to choose optimally compact nonlinear sub-stencils on a most general compact global stencil are presented. Interestingly, the explicit WENO-type schemes can be reverted within the proposed compact framework. Three nonlinear compact schemes (UI5, CI6 and CI8) on two practical stencils are analyzed and further compared with their explicit counterparts by a series of numerical experiments. The compact ones are superior to explicit ones in resolving rich flow structures as well as discontinuities.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76F05 Isotropic turbulence; homogeneous turbulence
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] Ekaterinaris, JA, High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci., 41, 192-300 (2005) · doi:10.1016/j.paerosci.2005.03.003
[2] Wang, ZJ, High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Prog. Aerosp. Sci., 43, 1-41 (2007) · doi:10.1016/j.paerosci.2007.05.001
[3] Deng, X.; Mao, M.; Tu, G.; Zhang, H.; Zhang, Y., High-order and high accurate CFD methods and their applications for complex grid problems, Commun. Comput. Phys., 11, 1081-1102 (2012) · Zbl 1373.76162 · doi:10.4208/cicp.100510.150511s
[4] Lele, SK, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[5] Visbal, MR; Gaitonde, DV, Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes, J. Comput. Acoust., 09, 1259-1286 (2001) · Zbl 1360.76192 · doi:10.1142/S0218396X01000541
[6] Kim, JW; Lee, DJ, Optimized compact finite difference schemes with maximum resolution, AIAA J., 34, 887-893 (1996) · Zbl 0900.76317 · doi:10.2514/3.13164
[7] Kim, JW, Optimised boundary compact finite difference schemes for computational aeroacoustics, J. Comput. Phys., 225, 995-1019 (2007) · Zbl 1118.76045 · doi:10.1016/j.jcp.2007.01.008
[8] Nagarajan, S.; Lele, SK; Ferziger, JH, A robust high-order compact method for large eddy simulation, J. Comput. Phys. (2003) · Zbl 1051.76030 · doi:10.1016/S0021-9991(03)00322-X
[9] Fu, D.; Ma, Y., A high order accurate difference scheme for complex flow fields, J. Comput. Phys., 134, 1-15 (1997) · Zbl 0882.76054 · doi:10.1006/jcph.1996.5492
[10] Fan, P., The standard upwind compact difference schemes for incompressible flow simulations, J. Comput. Phys., 322, 74-112 (2016) · Zbl 1351.76163 · doi:10.1016/j.jcp.2016.06.030
[11] Zhong, X., High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, J. Comput. Phys., 144, 662-709 (1998) · Zbl 0935.76066 · doi:10.1006/jcph.1998.6010
[12] Bhumkar, YG; Sheu, TWH; Sengupta, TK, A dispersion relation preserving optimized upwind compact difference scheme for high accuracy flow simulations, J. Comput. Phys., 278, 378-399 (2014) · Zbl 1349.76434 · doi:10.1016/j.jcp.2014.08.040
[13] Sicot, F.: High order schemes on non-uniform structured meshes in a finite-volume formulation. Master Dissertation, Chalmers University of Technology (2006)
[14] Broeckhoven, T.; Smirnov, S.; Ramboer, J.; Lacor, C., Finite volume formulation of compact upwind and central schemes with artificial selective damping, J. Sci. Comput., 21, 341-367 (2004) · Zbl 1069.76037 · doi:10.1007/s10915-004-1321-6
[15] Lacor, C.; Smirnov, S.; Baelmans, M., A finite volume formulation of compact central schemes on arbitrary structured grids, J. Comput. Phys., 198, 535-566 (2004) · Zbl 1051.65086 · doi:10.1016/j.jcp.2004.01.025
[16] Johnsen, E.; Larsson, J.; Bhagatwala, AV; Cabot, WH; Moin, P.; Olson, BJ; Rawat, PS; Shankar, SK; Sjögreen, B.; Yee, HC; Zhong, X.; Lele, SK, Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, J. Comput. Phys., 229, 1213-1237 (2010) · Zbl 1329.76138 · doi:10.1016/j.jcp.2009.10.028
[17] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103 · doi:10.1146/annurev-fluid-122109-160718
[18] Jiang, G-S; Shu, C-W, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[19] Adams, NA; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041 · doi:10.1006/jcph.1996.0156
[20] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029 · doi:10.1006/jcph.2002.7021
[21] Ren, Y-X; Liu, M.; Zhang, H., A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 192, 365-386 (2003) · Zbl 1037.65090 · doi:10.1016/j.jcp.2003.07.006
[22] Ghosh, D.; Baeder, JD, Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws, SIAM J. Sci. Comput., 34, A1678-A1706 (2012) · Zbl 1387.65085 · doi:10.1137/110857659
[23] Ghosh, D.; Baeder, JD, Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows, J. Sci. Comput., 61, 61-89 (2014) · Zbl 1299.76098 · doi:10.1007/s10915-014-9818-0
[24] Ghosh, D.; Medida, S.; Baeder, JD, Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows, AIAA J., 52, 1858-1870 (2014) · doi:10.2514/1.J052654
[25] Ghosh, D.; Constantinescu, EM; Brown, J., Efficient implementation of nonlinear compact schemes on massively parallel platforms, SIAM J. Sci. Comput., 37, C354-C383 (2015) · Zbl 1320.65115 · doi:10.1137/140989261
[26] Thomas, PD; Lombard, CK, Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 1030-1037 (1979) · Zbl 0436.76025 · doi:10.2514/3.61273
[27] Shu, C-W, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330 · doi:10.1137/070679065
[28] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077 · doi:10.1016/j.jcp.2006.06.043
[29] Deng, X.; Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys., 165, 22-44 (2000) · Zbl 0988.76060 · doi:10.1006/jcph.2000.6594
[30] Deng, X.; Mao, M.; Tu, G.; Liu, H.; Zhang, H., Geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys., 230, 1100-1115 (2011) · Zbl 1210.65153 · doi:10.1016/j.jcp.2010.10.028
[31] Abe, Y.; Nonomura, T.; Iizuka, N.; Fujii, K., Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids, J. Comput. Phys., 260, 163-203 (2014) · Zbl 1349.65552 · doi:10.1016/j.jcp.2013.12.019
[32] Nonomura, T.; Iizuka, N.; Fujii, K., Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids, Comput. Fluids, 39, 197-214 (2010) · Zbl 1242.76180 · doi:10.1016/j.compfluid.2009.08.005
[33] Zhu, Y.; Sun, Z.; Ren, Y.; Hu, Y.; Zhang, S., A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids, J. Sci. Comput., 72, 1021-1048 (2017) · Zbl 1376.65117 · doi:10.1007/s10915-017-0387-x
[34] Liao, F.; Ye, Z.; Zhang, L., Extending geometric conservation law to cell-centered finite difference methods on stationary grids, J. Comput. Phys., 284, 419-433 (2015) · Zbl 1352.65246 · doi:10.1016/j.jcp.2014.12.040
[35] Liao, F.; Ye, Z., Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids, J. Comput. Phys., 303, 212-221 (2015) · Zbl 1349.65313 · doi:10.1016/j.jcp.2015.09.032
[36] Liao, F.; He, G., High-order adapter schemes for cell-centered finite difference method, J. Comput. Phys., 403, 109090 (2020) · Zbl 1453.76134 · doi:10.1016/j.jcp.2019.109090
[37] Deng, X.; Mao, M.; Tu, G.; Zhang, Y.; Zhang, H., Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions, AIAA J., 48, 2840-2851 (2010) · doi:10.2514/1.J050285
[38] Nonomura, T.; Fujii, K., Effects of difference scheme type in high-order weighted compact nonlinear schemes, J. Comput. Phys., 228, 3533-3539 (2009) · Zbl 1396.65140 · doi:10.1016/j.jcp.2009.02.018
[39] Deng, X.; Jiang, Y.; Mao, M.; Liu, H.; Li, S.; Tu, G., A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law, Comput. Fluids, 116, 29-45 (2015) · Zbl 1390.65065 · doi:10.1016/j.compfluid.2015.04.015
[40] Yan, Z-G; Liu, H.; Ma, Y.; Mao, M.; Deng, X., Further improvement of weighted compact nonlinear scheme using compact nonlinear interpolation, Comput. Fluids, 156, 135-145 (2017) · Zbl 1390.76537 · doi:10.1016/j.compfluid.2017.06.028
[41] Subramaniam, A.; Wong, ML; Lele, SK, A high-order weighted compact high resolution scheme with boundary closures for compressible turbulent flows with shocks, J. Comput. Phys., 397, 108822 (2019) · Zbl 1453.76142 · doi:10.1016/j.jcp.2019.07.021
[42] Jin, Y.; Liao, F.; Cai, J., Optimized low-dissipation and low-dispersion schemes for compressible flows, J. Comput. Phys., 371, 820-849 (2018) · Zbl 1415.76486 · doi:10.1016/j.jcp.2018.05.049
[43] Liu, X.; Zhang, S.; Zhang, H.; Shu, C-W, A new class of central compact schemes with spectral-like resolution I: Linear schemes, J. Comput. Phys., 248, 235-256 (2013) · Zbl 1349.76504 · doi:10.1016/j.jcp.2013.04.014
[44] Tam, CKW; Webb, JC, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. (1993) · Zbl 0790.76057 · doi:10.1006/jcph.1993.1142
[45] Martín, MP; Taylor, EM; Wu, M.; Weirs, VG, A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence, J. Comput. Phys., 220, 270-289 (2006) · Zbl 1103.76028 · doi:10.1016/j.jcp.2006.05.009
[46] Zhanxin, L.; Qibai, H.; Li, H.; Jixuan, Y., Optimized compact filtering schemes for computational aeroacoustics, Int. J. Numer. Methods Fluids, 60, 827-845 (2009) · Zbl 1165.76037 · doi:10.1002/fld.1914
[47] Mullenix, N., Gaitonde, D.: A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, Virigina (2011)
[48] Sun, Z.; Luo, L.; Ren, Y.; Zhang, S., A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique, J. Comput. Phys., 270, 238-254 (2014) · Zbl 1349.76537 · doi:10.1016/j.jcp.2014.03.052
[49] Weirs, V., Candler, G., Weirs, V., Candler, G.: Optimization of weighted ENO schemes for DNS of compressible turbulence. In: 13th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virigina (1997)
[50] Ahn, M.-H., Lee, D.J.: Supersonic jet noise prediction using optimized compact scheme with modified monotonicity preserving limiter. In: 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virginia (2018)
[51] Ha, C-T; Lee, JH, A modified monotonicity-preserving high-order scheme with application to computation of multi-phase flows, Comput. Fluids, 197, 104345 (2020) · Zbl 1519.76209 · doi:10.1016/j.compfluid.2019.104345
[52] Sumi, T.; Kurotaki, T., A new central compact finite difference formula for improving robustness in weighted compact nonlinear schemes, Comput. Fluids, 123, 162-182 (2015) · Zbl 1390.76629 · doi:10.1016/j.compfluid.2015.09.012
[53] Pirozzoli, S., On the spectral properties of shock-capturing schemes, J. Comput. Phys., 219, 489-497 (2006) · Zbl 1103.76040 · doi:10.1016/j.jcp.2006.07.009
[54] Blazek, J., Computational Fluid Dynamics: Principles and Applications (2015), Amsterdam: Elsevier, Amsterdam · Zbl 1308.76001
[55] Hardin, J.C., Ristorcelli, J.R., Tam, C.K.W.: ICASE/LaRC workshop on benchmark problems in computational aeroacoustics (CAA). NASA-CP-3300 (1995)
[56] Bodony, DJ, Analysis of sponge zones for computational fluid mechanics, J. Comput. Phys., 212, 681-702 (2006) · Zbl 1161.76539 · doi:10.1016/j.jcp.2005.07.014
[57] Kim, J.W., Lee, D.J.: Fourth computational aeroacoustics (CAA) workshop on benchmark problems. NASA-CP-2004-212954 (2000)
[58] Brachet, ME; Meiron, DI; Orszag, SA; Nickel, BG; Morf, RH; Frisch, U., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 30, 411-452 (1983) · Zbl 0517.76033 · doi:10.1017/S0022112083001159
[59] Samtaney, R.; Pullin, DI; Kosović, B., Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Phys. Fluids, 13, 1415-1430 (2001) · Zbl 1184.76474 · doi:10.1063/1.1355682
[60] Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA-TM-81315 (1981)
[61] Shi, J.; Zhang, Y-T; Shu, C-W, Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 690-696 (2003) · Zbl 1047.76081 · doi:10.1016/S0021-9991(03)00094-9
[62] Inoue, O.; Hattori, Y., Sound generation by shock-vortex interactions, J. Fluid Mech., 380, 81-116 (1999) · Zbl 0953.76080 · doi:10.1017/S0022112098003565
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.