×

A finite volume formulation of compact central schemes on arbitrary structured grids. (English) Zbl 1051.65086

Summary: A formulation allowing the use of compact schemes in the finite volume context on arbitrary meshes is presented. The proposed formulation is based on the use of an implicit formula to evaluate the fluxes on the cell faces. A series of numerical experiments for a 2D model convection equation, a flat plate, a subsonic vortical problem as well as the large eddy simulation of channel flow has been carried out. The results indicate an important improvement in obtained accuracy compared to a standard central finite volume formulation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence
76G25 General aerodynamics and subsonic flows
76M12 Finite volume methods applied to problems in fluid mechanics
35L60 First-order nonlinear hyperbolic equations
Full Text: DOI

References:

[1] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[2] Kim, J. W.; Lee, D. J., Optimized compact finite difference schemes with maximum resolution, AIAA J., 34, 5 (1996) · Zbl 0900.76317
[3] Gamet, L.; Ducros, F.; Nicoud, F.; Poinsot, T., Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows, Int. J. Numer. Methods Fluids, 29, 159-191 (1999) · Zbl 0939.76060
[4] B.J. Boersma, S.K. Lele, Large eddy simulation of a mach 0.9 turbulent jet, AIAA paper 99-1874, 1999; B.J. Boersma, S.K. Lele, Large eddy simulation of a mach 0.9 turbulent jet, AIAA paper 99-1874, 1999
[5] Meinke, M.; Schröder, W.; Krause, E.; Rister, Th., A comparison of second- and sixth-order methods for large-eddy simulation, Comput. Fluids, 31, 695-718 (2001) · Zbl 1027.76025
[6] Koutsavdis, E. K.; Blaisdell, G. A.; Lyrintzis, A. S., Compact schemes with spatial filtering in computational aeroacoustics, AIAA J., 38, 713 (2000)
[7] Povitsky, A.; Morris, P. J., A higher-order compact method in space and time based on parallel implementation of the Thomas algorithm y flow, J. Comput. Phys., 161, 182-203 (2000) · Zbl 0959.65102
[8] Collatz, L., The Numerical Treatment of Differential Equations (1966), Springer · Zbl 0221.65088
[9] L. Collatz, Hermitian methods for initial-value problems in partial differential equations, in: Proceedings of the Royal Irish Academy Conference on Numerical Analysis, Topics in Numerical Analysis; L. Collatz, Hermitian methods for initial-value problems in partial differential equations, in: Proceedings of the Royal Irish Academy Conference on Numerical Analysis, Topics in Numerical Analysis · Zbl 0281.65052
[10] R.M. Visbal, V.D. Gaitonde, Higher-order-accurate methods for complex unsteady subsonic flows, in: AIAA paper 98-0131, 36th Aerospace Science Meeting, Reno, NV, 1998; R.M. Visbal, V.D. Gaitonde, Higher-order-accurate methods for complex unsteady subsonic flows, in: AIAA paper 98-0131, 36th Aerospace Science Meeting, Reno, NV, 1998
[11] Gaitonde, D.; Visbal, M., Pade-type higher-order boundary filters for the Navier-Stokes equations, AIAA J., 38, 2103 (2000)
[12] Visbal, R. M.; Gaitonde, V. D., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys., 181, 155-185 (2002) · Zbl 1008.65062
[13] X. Deng, M. Mao, High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations, AIAA Paper 2001-2626, 2001; X. Deng, M. Mao, High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations, AIAA Paper 2001-2626, 2001
[14] Ravichandran, K. S., Higher oder KFVS algorithms using compact upwind difference operators, J. Comput. Phys., 130, 161-173 (1997) · Zbl 0870.76050
[15] Goedheer, W. J.; Potters, J. H.H. M., A compact finite difference scheme on a non-equidistant mesh, J. Comput. Phys., 61, 269-279 (1985) · Zbl 0584.65050
[16] Gaitonde, D.; Shang, J. S., Optimized compact-difference-based finite-volume schemes for linear wave phenomena, J. Comput. Phys., 138, 617-643 (1997) · Zbl 0898.65055
[17] Kobayashi, M. H., On a class of padé finite volume methods, J. Comput. Phys., 156, 137-180 (1999) · Zbl 0940.65092
[18] C. Lacor, S. Smirnov, M. Baelmans, A finite volume formulation for compact schemes on arbitrary meshes with applications to LES, in: N. Satofuka (Ed.), CFD 2000, 1st International Conference on CFD, Kyoto, 11-14/7/2000, Springer, pp. 479-484; C. Lacor, S. Smirnov, M. Baelmans, A finite volume formulation for compact schemes on arbitrary meshes with applications to LES, in: N. Satofuka (Ed.), CFD 2000, 1st International Conference on CFD, Kyoto, 11-14/7/2000, Springer, pp. 479-484
[19] M.J. Pereira, M.H. Kobayashi, C.J. Pereira, High order compact schemes in finite volume context, in: B. Suarez, E. Onate, G. Bugeda, (Eds.), ECCOMAS 2000, Barcelona, CIMNE, 2000; M.J. Pereira, M.H. Kobayashi, C.J. Pereira, High order compact schemes in finite volume context, in: B. Suarez, E. Onate, G. Bugeda, (Eds.), ECCOMAS 2000, Barcelona, CIMNE, 2000
[20] Pereira, J. M.C.; Kobayashi, M. H.; Pereira, J. C.F., A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions, J. Comput. Phys., 167, 217-243 (2001) · Zbl 1013.76054
[21] S. Smirnov, C. Lacor, M. Baelmans, A finite volume formulation for compact schemes with applications to LES, in: AIAA paper 2001-2546, AIAA 15th CFD Conference, 2001; S. Smirnov, C. Lacor, M. Baelmans, A finite volume formulation for compact schemes with applications to LES, in: AIAA paper 2001-2546, AIAA 15th CFD Conference, 2001
[22] Vichnevetsky, R., Math. Comput. Simul., 21, 170 (1979) · Zbl 0419.65055
[23] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[24] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, vol. 1 (1988), McGraw-Hill: McGraw-Hill New York)
[25] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes, AIAA Paper 81-1259, January 1981; A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes, AIAA Paper 81-1259, January 1981
[26] C.K.W. Tam, Computational aeroacoustics: issues and methods, in: AIAA paper 95-0677, AIAA 33rd Aerospace Sciences Meeting and Exhibit, 1995; C.K.W. Tam, Computational aeroacoustics: issues and methods, in: AIAA paper 95-0677, AIAA 33rd Aerospace Sciences Meeting and Exhibit, 1995 · Zbl 0856.76080
[27] T. Broeckhoven, S. Smirnov, Jan Ramboer, C. Lacor, Finite volume formulation of compact upwind and central schemes with artificial selective damping, in: CD-ROM Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, 17-20/6/2003, also: accepted for publication in special issue of SIAM J. Sci. Comput.; T. Broeckhoven, S. Smirnov, Jan Ramboer, C. Lacor, Finite volume formulation of compact upwind and central schemes with artificial selective damping, in: CD-ROM Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, 17-20/6/2003, also: accepted for publication in special issue of SIAM J. Sci. Comput. · Zbl 1069.76037
[28] Smagorinsky, J., General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99-164 (1963)
[29] Y. Morinishi, Conservative properties of finite difference schemes for incompressible flow, Center for Turbulence Research, Annual Research Briefs, 1995; Y. Morinishi, Conservative properties of finite difference schemes for incompressible flow, Center for Turbulence Research, Annual Research Briefs, 1995
[30] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low reynolds number, J. Fluid Mech., 177 (1987) · Zbl 0616.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.