×

A new class of central compact schemes with spectral-like resolution. I: Linear schemes. (English) Zbl 1349.76504

Summary: In this paper, we design a new class of central compact schemes based on the cell-centered compact schemes of Lele [S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics 103 (1992) 16-42]. These schemes equate a weighted sum of the nodal derivatives of a smooth function to a weighted sum of the function on both the grid points (cell boundaries) and the cell-centers. In our approach, instead of using a compact interpolation to compute the values on cell-centers, the physical values on these half grid points are stored as independent variables and updated using the same scheme as the physical values on the grid points. This approach increases the memory requirement but not the computational costs. Through systematic Fourier analysis and numerical tests, we observe that the schemes have excellent properties of high order, high resolution and low dissipation. It is an ideal class of schemes for the simulation of multi-scale problems such as aeroacoustics and turbulence.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76G25 General aerodynamics and subsonic flows
Full Text: DOI

References:

[1] Berland, J.; Bogey, C.; Marsden, O.; Bailly, C., High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems, Journal of Computational Physics, 224, 637-662 (2007) · Zbl 1120.65323
[2] Boersma, B. J., A staggered compact finite difference formulation for the compressible Navier-Stokes equations, Journal of Computational Physics, 208, 675-690 (2005) · Zbl 1329.76222
[3] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computations, Journal of Computational Physics, 194, 194-214 (2004) · Zbl 1042.76044
[4] Cockburn, B.; Shu, C.-W., Nonlinearly stable compact schemes for shock calculations, SIAM Journal on Numerical Analysis, 31, 607-627 (1994) · Zbl 0805.65085
[5] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Progress in Aerospace Sciences, 40, 345-416 (2004)
[6] Colonius, T.; Lele, S. K.; Moin, P., The scattering of sound waves by a vortex: numerical simulations and analytical solutions, Journal of Fluid Mechanics, 260, 271-298 (1994)
[8] Fu, D.; Ma, Y.; Liu, H., Upwind compact schemes and applications, (Proceedings 5th Symposium on Computational Fluid Dynamics, vol. 1 (1993), Japan Society of Computational Fluid Dynamics)
[9] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, 67, 73-85 (1998) · Zbl 0897.65058
[11] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L., Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, Journal of Computational Physics, 124, 177-191 (1996) · Zbl 0849.76046
[12] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126, 202-228 (1996) · Zbl 0877.65065
[13] Kim, J. W., Optimised boundary compact finite difference schemes for computational aeroacoustics, Journal of Computational Physics, 225, 995-1019 (2007) · Zbl 1118.76045
[14] Lee, S.; Lele, S. K.; Moin, P., Interaction of isotropic turbulence with shock waves: effect of shock strength, Journal of Fluid Mechanics, 340, 225-247 (1997) · Zbl 0899.76194
[15] Lele, S. K., Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 103, 16-42 (1992) · Zbl 0759.65006
[16] Liu, Z.; Huang, Q.; Zhao, Z.; Yuan, J., Optimized compact finite difference schemes with high accuracy and maximum resolution, International Journal of Aeroacoustics, 7, 123-146 (2008)
[17] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 200-212 (1994) · Zbl 0811.65076
[19] Mahesh, K., A family of high order finite difference schemes with good spectral resolution, Journal of Computational Physics, 145, 332-358 (1998) · Zbl 0926.76081
[20] Mahesh, K.; Lele, S. K.; Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave, Journal of Fluid Mechanics, 334, 353-379 (1997) · Zbl 0899.76193
[21] Martin, M. P.; Taylor, E. M.; Wu, M.; Weirs, V. G., A bandwidth-optimized WENO scheme for the direct numerical simulation of compressible turbulence, Journal of Computational Physics, 220, 270-289 (2006) · Zbl 1103.76028
[22] Mitchell, B. E.; Lele, S. K.; Moin, P., Direct computation of the sound from a compressible co-rotating vortex pair, Journal of Fluid Mechanics, 285, 181-202 (1995) · Zbl 0848.76085
[23] Moin, P.; Squires, K.; Cabot, W.; Lee, S., A dynamic subgridscale model for compressible turbulence and scalar transport, Physics of Fluids A, 3, 2746 (1991) · Zbl 0753.76074
[24] Nagarajan, S.; Lele, S. K.; Ferziger, J. H., A robust high-order compact method for large eddy simulation, Journal of Computational Physics, 191, 392-419 (2003) · Zbl 1051.76030
[25] Samtaney, R.; Pullin, D. I.; Kosovic, B., Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Physics of Fluids, 5, 1415-1430 (2001) · Zbl 1184.76474
[26] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Cockburn, B.; Johnson, C.; Shu, C.-W.; Tadmor, E.; Quarteroni, A., Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697 (1998), Springer: Springer Berlin), 325-432 · Zbl 0927.65111
[27] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, 77, 439-471 (1988) · Zbl 0653.65072
[28] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, Journal of Computational Physics, 83, 32-78 (1989) · Zbl 0674.65061
[29] Shukla, R. K.; Zhong, X., Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation, Journal of Computational Physics, 204, 404-429 (2005) · Zbl 1067.65088
[30] Tam, C. K.W., Computational aeroacoustics: issues and methods, AIAA Journal, 33, 1788-1796 (1995) · Zbl 0856.76080
[31] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107, 262-281 (1993) · Zbl 0790.76057
[32] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, Journal of Computational Physics, 181, 155-185 (2002) · Zbl 1008.65062
[33] Wang, J.; Wang, L. P.; Xiao, Z.; Shi, Y.; Chen, S., A hybrid numerical simulation of isotropic compressible turbulence, Journal of Computational Physics, 229, 5257-5279 (2010) · Zbl 1346.76114
[34] Zhang, S.; Jiang, S.; Shu, C.-W., Development of nonlinear weighted compact schemes with increasingly higher order accuracy, Journal of Computational Physics, 227, 7294-7321 (2008) · Zbl 1152.65094
[35] Zhong, X., High-Order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, Journal of Computational Physics, 144, 662-709 (1998) · Zbl 0935.76066
[36] Zhuang, M.; Chen, R. F., Optimized upwind dispersion-relation-preserving finite difference scheme for computational aeroacoustics, AIAA Journal, 36, 2146-2148 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.