×

High-order energy-conserving line integral methods for charged particle dynamics. (English) Zbl 1452.65392

Summary: In this paper we study arbitrarily high-order energy-conserving methods for simulating the dynamics of a charged particle. They are derived and studied within the framework of Line Integral Methods (LIMs), previously used for defining Hamiltonian Boundary Value Methods (HBVMs), a class of energy-conserving Runge-Kutta methods for Hamiltonian problems. A complete analysis of the new methods is provided, which is confirmed by a few numerical tests.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
78A35 Motion of charged particles
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

LIMbook

References:

[1] Amodio, P.; Brugnano, L.; Iavernaro, F., Energy-conserving methods for Hamiltonian Boundary Value Problems and applications in astrodynamics, Adv. Comput. Math., 41, 881-905 (2015) · Zbl 1327.65267
[2] Bellan, P. M., Fundamentals of Plasma Physics (2008), Cambridge University Press
[3] Boris, J. P., Relativistic plasma simulation-optimization of a hybrid code, (Proceeding of Fourth Conference on Numerical Simulations of Plasmas (November 1970)), 3-67
[4] Brugnano, L.; Calvo, M.; Montijano, J. I.; Rández, L., Energy preserving methods for Poisson systems, J. Comput. Appl. Math., 236, 3890-3904 (2012) · Zbl 1247.65092
[5] Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods, Numer. Algorithms, 65, 633-650 (2014) · Zbl 1291.65357
[6] Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270, 842-870 (2015) · Zbl 1410.65477
[7] Brugnano, L.; Gurioli, G.; Iavernaro, F., Analysis of Energy and QUadratic Invariant Preserving (EQUIP) methods, J. Comput. Appl. Math., 335, 51-73 (2018) · Zbl 1444.65069
[8] Brugnano, L.; Gurioli, G.; Iavernaro, F.; Weinmüller, E. B., Line integral solution of Hamiltonian systems with holonomic constraints, Appl. Numer. Math., 127, 56-77 (2018) · Zbl 1382.65463
[9] Brugnano, L.; Iavernaro, F., Line Integral Methods which preserve all invariants of conservative problems, J. Comput. Appl. Math., 236, 3905-3919 (2012) · Zbl 1246.65108
[10] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 1335.65097
[11] Brugnano, L.; Iavernaro, F., Line integral solution of differential problems, Axioms, 7, 2, Article 36 pp. (2018) · Zbl 1432.65181
[12] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian BVMs (HBVMs): a family of “drift-free” methods for integrating polynomial Hamiltonian systems, AIP Conf. Proc., 1168, 715-718 (2009) · Zbl 1182.65188
[13] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian Boundary Value Methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5, 1-2, 17-37 (2010) · Zbl 1432.65182
[14] Brugnano, L.; Iavernaro, F.; Trigiante, D., A note on the efficient implementation of Hamiltonian BVMs, J. Comput. Appl. Math., 236, 375-383 (2011) · Zbl 1228.65107
[15] Brugnano, L.; Iavernaro, F.; Trigiante, D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218, 8475-8485 (2012) · Zbl 1245.65086
[16] Brugnano, L.; Iavernaro, F.; Trigiante, D., A two-step, fourth-order method with energy preserving properties, Comput. Phys. Commun., 183, 1860-1868 (2012) · Zbl 1305.65238
[17] Brugnano, L.; Iavernaro, F.; Trigiante, D., Energy and QUadratic Invariants Preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 50, 6, 2897-2916 (2012) · Zbl 1261.65130
[18] Brugnano, L.; Iavernaro, F.; Trigiante, D., Analysis of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 20, 650-667 (2015) · Zbl 1304.65262
[19] Brugnano, L.; Magherini, C., Blended implementation of block implicit methods for ODEs, Appl. Numer. Math., 42, 29-45 (2002) · Zbl 1006.65078
[20] Brugnano, L.; Magherini, C., Blended Implicit Methods for solving ODE and DAE problems, and their extension for second order problems, J. Comput. Appl. Math., 205, 777-790 (2007) · Zbl 1129.65048
[21] Ellison, C. L.; Burby, J. W.; Qin, H., Comment on “Symplectic integration of magnetic systems”: a proof that the Boris algorithm is not variational, J. Comput. Phys., 301, 48-493 (2015) · Zbl 1349.37083
[22] Griffiths, D. J., Introduction to Electrodynamics (1999), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0979.26001
[23] Hairer, E.; Lubich, C., Energy behaviour of the Boris method for charged-particle dynamics, BIT, 58, 969-979 (2018) · Zbl 1404.65309
[24] He, Y.; Sun, Y.; Liu, J.; Qin, H., Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281, 135-147 (2015) · Zbl 1351.82076
[25] He, Y.; Sun, Y.; Liu, J.; Qin, H., Higher order volume-preserving schemes for charged particle dynamics, J. Comput. Phys., 305, 172-184 (2016) · Zbl 1349.78032
[26] He, Y.; Zhou, Z.; Sun, Y.; Liu, J.; Qin, H., Explicit \(K\)-symplectic algorithms for charged particle dynamics, Phys. Lett. A, 381, 568-573 (2017) · Zbl 1372.78010
[27] Iavernaro, F.; Pace, B., \(s\)-Stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type, AIP Conf. Proc., 936, 603-606 (2007) · Zbl 1152.65345
[28] Iavernaro, F.; Pace, B., Conservative block-Boundary Value Methods for the solution of polynomial Hamiltonian systems, AIP Conf. Proc., 1048, 888-891 (2008) · Zbl 1167.65461
[29] Iavernaro, F.; Trigiante, D., High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, J. Numer. Anal. Ind. Appl. Math., 4, 1-2, 87-101 (2009) · Zbl 1191.65169
[30] Li, H.; Wang, Y., A discrete line integral method of order two for the Lorentz force system, Appl. Math. Comput., 291, 207-212 (2016) · Zbl 1410.81025
[31] Qin, H.; Zhang, S. X.; Xiao, J. Y.; Liu, J.; Sun, Y. J.; Tang, W. M., Why is Boris algorithm so good?, Phys. Plasmas, 20, Article 084503 pp. (2013)
[32] Tao, M., Explicit high-order symplectic integrators for charged particles in general electromagnetic fields, J. Comput. Phys., 327, 245-251 (2016) · Zbl 1373.78048
[33] Umeda, T., A three-step Boris integrator for Lorentz force equation of charged particles, Comput. Phys. Commun., 228, 1-4 (2018)
[34] Umeda, T., Multi-step Boris rotation schemes for Lorentz force equation of charged particles, Comput. Phys. Commun., 237, 37-41 (2019) · Zbl 07683929
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.