×

Line integral solution of Hamiltonian systems with holonomic constraints. (English) Zbl 1382.65463

Summary: In this paper, we propose a second order energy-conserving approximation procedure for Hamiltonian systems with holonomic constraints. The derivation of the procedure relies on the use of the so-called line integral framework. We provide numerical experiments to illustrate theoretical findings.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems

Software:

BiMD; LIMbook; RODAS; BiM

References:

[1] Amodio, P.; Brugnano, L.; Iavernaro, F., Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics, Adv. Comput. Math., 41, 881-905 (2015) · Zbl 1327.65267
[2] Andersen, H. C., Rattle: a “velocity” version of the Shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24-34 (1983) · Zbl 0513.65052
[3] Barletti, L.; Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput., 318, 3-18 (2018) · Zbl 1426.65202
[4] Benettin, G.; Cherubini, A. M.; Fassò, F., A changing chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds, SIAM J. Sci. Comput., 23, 4, 1189-1203 (2001) · Zbl 1002.65136
[5] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1996), SIAM: SIAM Philadelphia, PA · Zbl 0844.65058
[6] Brugnano, L.; Calvo, M.; Montijano, J. I.; Ràndez, L., Energy preserving methods for Poisson systems, J. Comput. Appl. Math., 236, 3890-3904 (2012) · Zbl 1247.65092
[7] Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Efficient implementation of Gauss collocation and Hamiltonian boundary value methods, Numer. Algorithms, 65, 633-650 (2014) · Zbl 1291.65357
[8] Brugnano, L.; Frasca Caccia, G.; Iavernaro, F., Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270, 842-870 (2015) · Zbl 1410.65477
[9] Brugnano, L.; Iavernaro, F., Line integral methods which preserve all invariants of conservative problems, J. Comput. Appl. Math., 236, 3905-3919 (2012) · Zbl 1246.65108
[10] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1335.65097
[11] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian BVMs (HBVMs): a family of “drift-free” methods for integrating polynomial Hamiltonian systems, AIP Conf. Proc., 1168, 715-718 (2009) · Zbl 1182.65188
[12] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5, 1-2, 17-37 (2010) · Zbl 1432.65182
[13] Brugnano, L.; Iavernaro, F.; Trigiante, D., A note on the efficient implementation of Hamiltonian BVMs, J. Comput. Appl. Math., 236, 375-383 (2011) · Zbl 1228.65107
[14] Brugnano, L.; Iavernaro, F.; Trigiante, D., A two-step, fourth-order method with energy preserving properties, Comput. Phys. Commun., 183, 1860-1868 (2012) · Zbl 1305.65238
[15] Brugnano, L.; Iavernaro, F.; Trigiante, D., Energy and quadratic invariants preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 50, 6, 2897-2916 (2012) · Zbl 1261.65130
[16] Brugnano, L.; Iavernaro, F.; Trigiante, D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218, 8475-8485 (2012) · Zbl 1245.65086
[17] Brugnano, L.; Iavernaro, F.; Trigiante, D., Analysis of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 20, 650-667 (2015) · Zbl 1304.65262
[18] Brugnano, L.; Magherini, C., The BiM code for the numerical solution of ODEs, J. Comput. Appl. Math., 164-165, 145-158 (2004) · Zbl 1038.65063
[19] Brugnano, L.; Magherini, C., Blended implicit methods for solving ODE and DAE problems, and their extension for second order problems, J. Comput. Appl. Math., 205, 777-790 (2007) · Zbl 1129.65048
[20] Brugnano, L.; Magherini, C., Recent advances in linear analysis of convergence for splittings for solving ODE problems, Appl. Numer. Math., 59, 542-557 (2009) · Zbl 1162.65039
[21] Brugnano, L.; Sun, Y., Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems, Numer. Algorithms, 65, 611-632 (2014) · Zbl 1291.65358
[22] Cai, Z. Q.; Li, X. F.; Zhou, H., Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points, Aerosp. Sci. Technol., 42, 384-391 (2015)
[23] Console, P.; Hairer, E.; Lubich, C., Symmetric multistep methods for constrained Hamiltonian systems, Numer. Math., 124, 517-539 (2013) · Zbl 1290.65125
[24] Gonzalez, O., Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration, Physica D, 132, 165-174 (1999) · Zbl 0942.70002
[25] Hairer, E., Global modified Hamiltonian for constrained symplectic integrators, Numer. Math., 95, 325-336 (2003) · Zbl 1041.65102
[26] Hairer, E., Energy preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 1-2, 73-84 (2010) · Zbl 1432.65185
[27] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1094.65125
[28] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1192.65097
[29] Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal., 33, 1, 368-387 (1996) · Zbl 0903.65066
[30] Leimkhuler, B.; Reich, S., Symplectic integration of constrained Hamiltonian systems, Math. Comput., 63, 208, 589-605 (1994) · Zbl 0813.65103
[31] Leimkhuler, B.; Reich, S., Simulating Hamiltonian Dynamics (2004), Cambridge University Press · Zbl 1069.65139
[32] Leimkhuler, B.; Skeel, R. D., Symplectic numerical integrators in constrained Hamiltonian systems, J. Comput. Phys., 112, 117-125 (1994) · Zbl 0817.65057
[33] Leyendecker, S.; Betsch, P.; Steinmann, P., Energy-conserving integration of constrained Hamiltonian systems - a comparison of approaches, Comput. Mech., 33, 174-185 (2004) · Zbl 1067.70003
[34] Reich, S., Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal., 33, 2, 475-491 (1996) · Zbl 0852.65060
[35] Reich, S., On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, Numer. Math., 76, 231-247 (1997) · Zbl 0882.65065
[36] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J.C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of \(n\)-alkanes, J. Comput. Phys., 23, 327-341 (1977)
[37] Seiler, W. M., Position versus momentum projections for constrained Hamiltonian systems, Numer. Algorithms, 19, 223-234 (1998) · Zbl 0923.70004
[38] Seiler, W. M., Numerical integration of constrained Hamiltonian systems using Dirac brackets, Math. Comput., 68, 226, 661-681 (1999) · Zbl 1043.65081
[39] Wei, Y.; Deng, Z.; Li, Q.; Wang, B., Projected Runge-Kutta methods for constrained Hamiltonian systems, Appl. Math. Mech., 37, 8, 1077-1094 (2016) · Zbl 1348.74140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.