×

Volume-preserving algorithms for charged particle dynamics. (English) Zbl 1351.82076

Summary: The paper reports the development of volume-preserving algorithms using the splitting technique for charged particle motion under the Lorentz force. The source-free nature of the Lorentz vector field has been investigated. Based on the volume-preserving property of the dynamics, a class of numerical methods for advancing charged particles in a general electromagnetic field has been constructed by splitting the classical evolution operator. This new class of numerical methods, which includes the Boris algorithm as a special case, conserves phase space volume, and globally bounds the numerical errors of energy, momentum, and other adiabatic invariants up to the order of the method over a very long simulation time. These algorithms can be computed explicitly, and thus are effective for the long-term simulation of the multi-scale dynamics of plasmas.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
82D10 Statistical mechanics of plasmas
Full Text: DOI

References:

[1] Bellan, P. M., Fundamentals of Plasma Physics (2008), Cambridge University Press · Zbl 1508.82047
[2] Littlejohn, R. G., Variational principles of guiding centre motion, J. Plasma Phys., 29, 111-125 (1983)
[3] Qin, H.; Guan, X., Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Phys. Rev. Lett., 100, 035006 (2008)
[4] Qin, H.; Guan, X.; Tang, W. M., Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry, Phys. Plasmas, 16, 042510 (2009)
[5] Shang, Z., KAM theorem of symplectic algorithms for Hamiltonian systems, Numer. Math., 83, 3, 477-496 (1999) · Zbl 0938.65149
[6] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1094.65125
[7] Littlejohn, R. G., Hamiltonian formulation of guiding center motion, Phys. Fluids, 24, 9, 1730-1749 (1981) · Zbl 0473.76123
[8] Morrison, P. J.; Greene, J. M., Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics, Phys. Rev. Lett., 45, 790-794 (1980)
[9] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations. I—Nonstiff Problems, Springer Ser. Comput. Math., vol. 8 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.65048
[10] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation, Ser. Plasma Phys. (2005), Taylor & Francis
[11] Boris, J., (Proceedings of the Fourth Conference on Numerical Simulation of Plasmas (1970), Naval Research Laboratory: Naval Research Laboratory Washington D.C.), 3-67 · Zbl 0281.00011
[12] Stoltz, P. H.; Cary, J. R.; Penn, G.; Wurtele, J., Efficiency of a Boris like integration scheme with spatial stepping, Phys. Rev. Spec. Top., Accel. Beams, 5, 094001 (2002)
[13] Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, W. M., Why is Boris algorithm so good?, Phys. Plasmas, 20, 084503 (2013)
[14] Shang, Z., Construction of volume-preserving difference schemes for source-free systems via generating functions, J. Comput. Math., 12, 3, 265-272 (1994) · Zbl 0807.65072
[15] Sun, Y., A class of volume-preserving numerical algorithms, Appl. Math. Comput., 206, 2, 841-852 (2008) · Zbl 1158.65062
[16] Feng, K., Symplectic, contact and volume-preserving algorithms, (Shi, Z. C.; Ushijima, T., Proc. 1st China-Japan Conf. on Computation of Differential Equations and Dynamical Systems (1993), World Scientific: World Scientific Singapore), 1-28
[17] Feng, K.; Shang, Z., Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71, 451-463 (1995) · Zbl 0839.65075
[18] McLachlan, R. I.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[19] Finn, J. M.; Chacón, L., Volume preserving integrators for solenoidal fields on a grid, Phys. Plasmas, 12, 054503 (2005)
[20] Crouseilles, N.; Mehrenberger, M.; Sonnendrücker, E., Conservative semi-Lagrangian schemes for the Vlasov equation, J. Comput. Phys., 229, 1927-1953 (2010) · Zbl 1303.76103
[21] Chin, S. A., Symplectic and energy-conserving algorithms for solving magnetic field trajectories, Phy. Rev. E, 77, 066401 (2008)
[22] Wu, Y. K.; Forest, E.; Robin, D. S., Explicit symplectic integrator for s-dependent static magnetic field, Phys. Rev. E, 68, 046502 (2003)
[23] Patacchini, L.; Hutchinson, I. H., Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field, J. Comput. Phys., 228, 2604-2615 (2009) · Zbl 1160.78318
[24] Santilli, R. M., Foundations of Theoretical Mechanics I (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0401.70015
[25] Santilli, R. M., Foundations of Theoretical Mechanics II (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0536.70001
[26] Sun, Y.; Shang, Z., Structure-preserving algorithms for Birkhoffian systems, Phys. Lett. A, 336, 358-369 (2005) · Zbl 1136.70322
[27] Suzuki, M., General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A, 165, 387-395 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.