×

Normality of DSER elementary orthogonal group. (English) Zbl 1450.11034

Let \(R\) be a commutative ring in which 2 is invertible. A quadratic form on an \(R\)-module \(Q\) is a map \(q:Q\rightarrow R\) such that \(q(ax)=a^2q(x)\) for \(a\in R\) and \(x\in Q\), and \(B_q(x,y)=q(x+y)-q(x)-q(y)\) is a symmetric \(R\)-bilinear map from \(Q\times Q\rightarrow R\). A quadratic \(R\)-module is a pair \((Q,q)\), where \(Q\) is an \(R\)-module, and \(q\) is a quadratic form on \(Q\). We say that a quadratic \(R\)-module \((Q, q)\) is non-singular if the map \(d_{B_q}:Q\rightarrow Q^*\) induced by the bilinear form \(B_q\) is an isomorphism. A quadratic space over \(R\) is a non-degenerate (or non-singular) quadratic \(R\)-module \((Q,q)\), where \(Q\) is a finitely generated projective \(R\)-module. Let \((Q,q)\) be a quadratic \(R\)-space with associated bilinear form \(B_q\) and \(P\) be a finitely generated projective \(R\)-module. The module \(P \oplus P^*\) has a natural quadratic form given by \(p((x, f))=f(x)\) for \(x\in P\), \(f\in P^*\). The corresponding bilinear form \(B_p\) is given by \(B_p((x_1, f_1), (x_2, f_2)) = f_1(x_2) + f_2(x_1)\) for \(x_1, x_2 \in P\) and \(f_1, f_2 \in P^*\). The quadratic space \((P \oplus P^*, p)\), denoted by \(\mathbb{H}(P)\), is called the hyperbolic space of \(P\). Given any homomorphism \(\alpha:Q\rightarrow P\), define \(\alpha^*:P^* \rightarrow Q\) by the formula \(\alpha^*=d^{-1}_{B_q}\circ\alpha^t\), where \(\alpha^t\) denotes the dual map \(P^* \rightarrow Q^*\). If \(\beta:Q\rightarrow P^*\), then define \(\beta^*:P \rightarrow Q\) by precomposing \(d^{-1}_{B_q}\circ \beta^t\) with \(\varepsilon : P \rightarrow P^{**}\), where \(\beta^t\) denotes the dual map \(P^{**} \rightarrow Q^*\). The linear map \(\alpha^*\) is characterized by the relation \((f \circ \alpha)(z) = B_q (\alpha^*(f), z)\) for \(f \in P^*\), \(z\in Q\).
Let \(\operatorname{O}_R(Q)\) denote the orthogonal group of the quadratic module \((Q, q)\). That is, \(\operatorname{O}_R(Q) = \{\theta \in Aut_R(Q) : q(\theta(z)) = q(z) \ \text{for all} \ z \in Q\}\). In [J. Algebra 10, 286–298 (1968; Zbl 0181.04302)], A. Roy defined the elementary transformations \(E_\alpha\) and \(E^*_\beta\) of \(Q \perp \mathbb{H}(P)\) given by \(E_\alpha(z) = z + \alpha(z)\), \(E^*_\beta(z) = z + \beta(z)\), \(E_\alpha(x) =x\), \(E^*_\beta(x) = -\beta^*(x) + x - \frac{1}{2}\beta \beta^*(x)\), \(E_\alpha(f) = -\alpha^*(f) - \frac{1}{2}\alpha \alpha^*(f) +f\), and \(E^*_\beta(f) = f\) for \(z \in Q\), \(x \in P\) and \(f \in P^*\). These transformations are orthogonal transformations. The Dickson-Siegel-Eichler-Roy’s (DSER) subgroup \(\operatorname{EO}_R(Q, \mathbb{H}(P))\) of the orthogonal group \(\operatorname{O}_R(Q\perp \mathbb{H}(P))\) is the subgroup generated by the elementary generators \(E_\alpha\), \(E^*_\beta\), where \(\alpha \in \operatorname{Hom}(Q, P)\) and \(\beta \in \operatorname{Hom}(Q, P^*)\).
The main results of this paper are Theorem 1.1., which states that \(\operatorname{EO}_R(Q, \mathbb{H}(R)^m)\) is normal in \(\operatorname{O}_R(Q\perp \mathbb{H}(R)^m)\), where \(Q\) and \(\mathbb{H}(R)^m\) are quadratic spaces over a commutative ring \(R\) with \(\operatorname{rank}(Q) \geq 1\) and \(m \geq 2\), and Theorem 1.2., which states that \(\operatorname{EO}_R(Q, \mathbb{H}(P))\) is a normal subgroup of \(\operatorname{O}_R(Q\perp \mathbb{H}(P))\), where \(Q\) and \(\mathbb{H}(P)\) are quadratic spaces over a commutative ring \(R\), with \(\operatorname{rank}(Q) \geq 1\) and \(\operatorname{rank}(P) \geq 2\). In order to prove these theorems, the authors prove an analogue of Quillen’s Local-Global principle in the case of extended module for the DSER elementary orthogonal group.

MSC:

11E81 Algebraic theory of quadratic forms; Witt groups and rings
13C10 Projective and free modules and ideals in commutative rings
37A44 Relations between ergodic theory and number theory

Citations:

Zbl 0181.04302

References:

[1] Abe, Eiichi, Chevalley groups over local rings, Tohoku Math. J. (2), 21, 474-494 (1969) · Zbl 0188.07201
[2] Ambily, A. A., Yoga of commutators in DSER elementary orthogonal group, J. Homotopy Relat. Struct., 14, 2, 595-610 (2019) · Zbl 1473.19005
[3] Ambily, A. A., Normality and \(\operatorname{K}_1\)-stability of Roy’s elementary orthogonal group, J. Algebra, 424, 522-539 (2015) · Zbl 1310.19003
[4] Ambily, A. A.; Rao, Ravi A., Extendability of quadratic modules over a polynomial extension of an equicharacteristic regular local ring, J. Pure Appl. Algebra, 218, 10, 109-121 (2014) · Zbl 1308.19004
[5] Baeza, R., Quadratic Forms Over Semilocal Rings, Lecture Notes in Mathematics, vol. 655 (1978), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0382.10014
[6] Bak, Anthony; Vavilov, Nikolai, Normality for elementary subgroup functors, Math. Proc. Camb. Philos. Soc., 118, 1, 35-47 (1995) · Zbl 0857.20028
[7] Bass, H., K-theory and stable algebra, Publ. Math. IHÉS, 22, 5-60 (1964) · Zbl 0248.18025
[8] Basu, Rabeya, Local-global principle for general quadratic and general Hermitian groups and the nilpotence of \(\operatorname{KH}_1\), Problems in the Theory of Representations of Algebras and Groups. Part 30. Problems in the Theory of Representations of Algebras and Groups. Part 30, Zap. Nauč. Semin. POMI, 452, 5-31 (2016)
[9] Calmès, Baptiste; Fasel, Jean, Groupes classiques, (Autours des Schémas en Groupes, vol. II (2015)), 1-133 · Zbl 1360.20048
[10] Cohn, P. M., On the structure of the \(\operatorname{GL}_2\) of a ring, Publ. Math. IHÉS, 30, 5-53 (1966)
[11] Hazrat, Roozbeh; Vavilov, Nikolai, \( \operatorname{K}_1\) of Chevalley groups are nilpotent, J. Pure Appl. Algebra, 179, 1-2, 99-116 (2003) · Zbl 1012.19001
[12] Kopeĭko, V. I., Stabilization of symplectic groups over a ring of polynomials, Mat. Sb. (N.S.), 106(148), 1, 94-107 (1978) · Zbl 0398.20051
[13] Kopeĭko, V. I., A theorem of Suslin, Zap. Nauč. Semin. POMI, 132, 119-121 (1983), Modules and Algebraic Groups, 2 · Zbl 0551.20030
[14] Lam, T. Y., Serre’s Problem on Projective Modules, Springer Monographs in Mathematics (2006), Springer-Verlag · Zbl 1101.13001
[15] Parimala, Raman, Quadratic forms over polynomial rings over Dedekind domains, Am. J. Math., 103, 2, 289-296 (1981) · Zbl 0466.13007
[16] Petrov, V. A., Odd unitary groups, Zap. Nauč. Semin. POMI, 305, Vopr. Teor. Predst. Algebr. i Grupp. 10, 195-225 (2003)
[17] Petrov, V. A.; Stavrova, A. K., Elementary subgroups in isotropic reductive groups, Algebra Anal., 20, 4, 160-188 (2008) · Zbl 1206.20053
[18] Quillen, Daniel, Projective modules over polynomial rings, Invent. Math., 36, 167-171 (1976) · Zbl 0337.13011
[19] Rao, Ravi A., Extendability of quadratic modules with sufficient Witt index, J. Algebra, 86, 1, 159-180 (1984) · Zbl 0537.10013
[20] Roy, Amit, Cancellation of quadratic form over commutative rings, J. Algebra, 10, 286-298 (1968) · Zbl 0181.04302
[21] Serre, Jean-Pierre, Faisceaux algébriques cohérents, Ann. Math. (2), 61, 197-278 (1955) · Zbl 0067.16201
[22] Suresh, V., Linear relations in Eichler orthogonal transformations, J. Algebra, 168, 804-809 (1994) · Zbl 0816.11028
[23] Suslin, A. A., On a theorem of Cohn, Zap. Nauč. Semin. POMI, 64, 127-130 (1976) · Zbl 0342.12010
[24] Suslin, A. A.; Kopeĭko, V. I., Quadratic modules and the orthogonal group over polynomial rings, Zap. Nauč. Semin. POMI, 71, 216-250 (1977), 287 · Zbl 0416.20045
[25] Suzuki, Kazuo, Normality of the elementary subgroups of twisted Chevalley groups over commutative rings, J. Algebra, 175, 2, 526-536 (1995) · Zbl 0840.20043
[26] Taddei, Giovanni, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, (Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II, Boulder, Colo., 1983. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II, Boulder, Colo., 1983, Contemp. Math., vol. 55 (1986)), 693-710 · Zbl 0602.20040
[27] Tang, Guoping, Hermitian groups and K-theory, K-Theory, 13, 3, 209-267 (1998) · Zbl 0899.19003
[28] Vaserstein, L. N., Stabilization of unitary and orthogonal groups over a ring with involution, Mat. Sb. (N.S.), 81, 123, 328-351 (1970) · Zbl 0253.20066
[29] Yu, Weibo, Stability for odd unitary \(\operatorname{K}_1\) under the Λ-stable range condition, J. Pure Appl. Algebra, 217, 5, 886-891 (2013) · Zbl 1275.19006
[30] Yu, Weibo; Tang, Guoping, Nilpotency of odd unitary \(\operatorname{K}_1\)-functor, Commun. Algebra, 44, 8, 3422-3453 (2016) · Zbl 1345.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.