×

Normality for elementary subgroup functors. (English) Zbl 0857.20028

The main theme of the paper is to use group functors to prove the normality of elementary subgroups in a classical group or Chevalley group over a ring under certain assumptions on the base ring generalizing the theorem that the subgroup generated by the elementary matrices is normal in the group of all invertible matrices over a field.
Given a category \(\Lambda\) with objects being the pairs \((k_M,M)\) of commutative rings (with 1) \(k_M\) and \({\mathcal I}\)-graded \(k_M\)-modules \(M=\bigoplus_{i\in{\mathcal I}}M_i\) with a fixed index set \(\mathcal I\) (which corresponds to the set of roots in the case of Chevalley groups). The morphisms are pairs of mappings with the first being ring homomorphisms while the second being semilinear mappings.
The authors require the category \(\Lambda\) to be closed under the localization construction, i.e., if \((k_M,M)\) is in \(\Lambda\), so are \((S^{-1}k_M,S^{-1}M)\) and the natural morphism \((k_M,M)\to(S^{-1}k_M,S^{-1}M)\). A \(\Lambda\)-group functor \(G\) is a group functor from \(\Lambda\) to the category of groups such that for each \(i\in{\mathcal I}\) there is a fixed injective natural transformation \(\varepsilon_i:\lambda_i\to G\), where \(\lambda_i(M)=M_i\) defines a group functor from \(\Lambda\) to the category of Abelian groups. The group functor \(E\) is defined such that \(E(k_M,M)\) is the subgroup of \(G(k_M,M)\) generated by all \(\varepsilon_i(k_M,M)\) (the root subgroups in the case of Chevalley groups). The main theorem states that for each \((k_M,M)\), under certain conditions related to the localization at elements not in the Jacobson radical of \(k_M\), \(E(k_M,M)\) is normal in \(G(k_M,M)\). Then this result is applied to classical groups and Chevalley groups over rings, improving certain results obtained earlier by many people. It should be noted that the result of the paper does not prove the normality of the subgroup functor \(E\) in a group functor \(G\) unless the category \(\Lambda\) is carefully chosen (so that the conditions are satisfied for all objects and compatible with the morphisms).
Reviewer: Z.Lin (Manhattan)

MSC:

20G35 Linear algebraic groups over adèles and other rings and schemes
20J15 Category of groups
20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)
20E07 Subgroup theorems; subgroup growth
Full Text: DOI

References:

[1] DOI: 10.1007/BF01465463 · Zbl 0459.20042 · doi:10.1007/BF01465463
[2] DOI: 10.1070/SM1970v010n03ABEH001673 · Zbl 0253.20066 · doi:10.1070/SM1970v010n03ABEH001673
[3] Taddei, C.R. Acad. Sci. Paris 295 pp 47– (1985)
[4] DOI: 10.1007/BFb0061370 · doi:10.1007/BFb0061370
[5] DOI: 10.1007/BF02684689 · Zbl 0248.18025 · doi:10.1007/BF02684689
[6] DOI: 10.1007/BF00533991 · Zbl 0741.19001 · doi:10.1007/BF00533991
[7] Bak, Ann. Math. Studies 98 (1981)
[8] DOI: 10.1007/BFb0059990 · doi:10.1007/BFb0059990
[9] DOI: 10.2748/tmj/1178240833 · Zbl 0336.20033 · doi:10.2748/tmj/1178240833
[10] Abe, Sci. Repts. Tokyo Kyoiku Daigaku 13 pp 194– (1977)
[11] Suzuki, Sci. Repts. Tokyo Kyoiku Daigaku 13 pp 237– (1977)
[12] DOI: 10.1007/BF01681481 · Zbl 0497.20038 · doi:10.1007/BF01681481
[13] Suslin, Soviet Math. Izv. 41 pp 503– (1977)
[14] Steinberg, Lectures on Chevalley groups (1968)
[15] DOI: 10.1007/BF01094379 · Zbl 0529.20037 · doi:10.1007/BF01094379
[16] Matsumoto, Ann. Sci. Ecole Norm. Sup. 2 pp 1– (1969)
[17] DOI: 10.1070/SM1978v034n05ABEH001337 · Zbl 0414.20037 · doi:10.1070/SM1978v034n05ABEH001337
[18] Hahn, The classical groups and K-theory (1989) · Zbl 0683.20033 · doi:10.1007/978-3-662-13152-7
[19] Cakter, Simple groups of Lie type (1972)
[20] Wilson, Proc. Cambridge Phil. Soc. 71 pp 163– (1973)
[21] Vavilov, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima 1990) pp 219– (1991)
[22] Vavilov, Trudy Mat. Inst. Steklov 183 pp 27– (1991)
[23] DOI: 10.1007/BFb0089533 · doi:10.1007/BFb0089533
[24] Taddei, Contemp. Math. 55 pp 693– (1986) · doi:10.1090/conm/055.2/1862660
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.