×

A spatial sixth-order CCD-TVD method for solving multidimensional coupled Burgers’ equation. (English) Zbl 1449.65300

Summary: In this paper, a high-order compact difference scheme is proposed for solving multidimensional nonlinear Burgers’ equation. The three-stage third-order total variation diminishing (TVD) Runge-Kutta scheme is employed in time, and the three-point combined compact difference (CCD) scheme is used for spatial discretization. The proposed TVD-CCD method is free of using Hopf-Cole transformation, and treats the nonlinear term explicitly. Thus it is very efficient and easy to implement. Our method is effective to capture shock wave, third-order accurate in time, and sixth-order accurate in space. In addition, we show the unique solvability of the CCD system under non-periodic boundary conditions. Numerical experiments are given to demonstrate the high efficiency and accuracy of the proposed method.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Bahadir, AR, A fully implicit finite-difference scheme for two-dimensional Burgers’ equations, Appl Math Comput, 137, 131-137 (2003) · Zbl 1027.65111
[2] Bahadir, AR; Saǧlam, M., A mixed finite difference and boundary element approach to one-dimensional Burgers’ equation, Appl Math Comput, 160, 663-673 (2005) · Zbl 1062.65088
[3] Bateman, H., Some recent researches on the motion of fluids, Mon Weather Rev, 43, 163-170 (1914) · doi:10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
[4] Caldwell, J.; Wanless, P.; Cook, AE, A finite element approach to Burgers’ equation, Appl Math Model, 5, 189-193 (1981) · Zbl 0476.76054 · doi:10.1016/0307-904X(81)90043-3
[5] Campos, MD; Romão, EC, A high-order finite-difference scheme with a linearization technique for solving of three-dimensional Burgers’ equation, CMES-Comp Model Eng, 103, 139-154 (2014) · Zbl 1357.65113
[6] Chen, B.; He, D.; Pan, K., A linearized high-order combined compact difference scheme for multi-dimensional coupled Burgers’ equations, Numer Math Theor Methods Appl, 11, 299-320 (2018) · Zbl 1424.65124 · doi:10.4208/nmtma.OA-2017-0090
[7] Chen, B.; He, D.; Pan, K., A CCD-ADI method for two-dimensional linear and nonlinear hyperbolic telegraph equations with variable coefficients, Int J Comput Math, 96, 992-1004 (2019) · Zbl 1499.65377 · doi:10.1080/00207160.2018.1478415
[8] Chu, P.; Fan, C., A three-point combined compact difference scheme, J Comput Phys, 140, 370-399 (1998) · Zbl 0923.65071 · doi:10.1006/jcph.1998.5899
[9] Cole, JD, On a quasilinear parabolic equation occurring in aerodynamics, Quart Appl Math, 9, 225-236 (1951) · Zbl 0043.09902 · doi:10.1090/qam/42889
[10] Davidson, GA, A Burgers’ equation approach to finite amplitude acoustics in aerosol media, J Sound Vib, 38, 475-495 (1975) · Zbl 0295.76052 · doi:10.1016/S0022-460X(75)80135-0
[11] Dehghan, M.; Saray, BN; Lakestani, M., Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math Methods Appl Sci, 37, 894-912 (2014) · Zbl 1417.37271 · doi:10.1002/mma.2847
[12] Esipov, SE, Coupled Burgers’ equations: a model of poly-dispersive sedimentation, Phys Rev E, 52, 3711-3718 (1995) · doi:10.1103/PhysRevE.52.3711
[13] Fletcher, CA, Generating exact solutions of the two-dimensional Burgers’ equations, Int J Numer Methods Fluids, 3, 213-216 (1983) · Zbl 0563.76082 · doi:10.1002/fld.1650030302
[14] Gao, G.; Sun, H., Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J Comput Phys, 298, 520-538 (2015) · Zbl 1349.65294 · doi:10.1016/j.jcp.2015.05.052
[15] Gao, Q.; Zou, M., An analytical solution for two and three dimensional nonlinear Burgers’ equation, Appl Mathods Model, 45, 255-270 (2017) · Zbl 1446.35172 · doi:10.1016/j.apm.2016.12.018
[16] Gottlieb, S.; Shu, C., Total variation diminishing Runger-Kutta schemes, Math Comput, 221, 73-85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[17] Gülsu, M., A finite difference approach for solution of Burgers’ equation, Appl Math Comput, 175, 1245-1255 (2006) · Zbl 1093.65081
[18] Gülsu, M.; Özis, T., Numerical solution of Burgers’ equation with restrictive Taylor approximations, Appl Math Comput, 171, 1192-1200 (2005) · Zbl 1090.65099
[19] He, D., An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear hyperbolic equation, Numer Algorithms, 72, 1103-1117 (2016) · Zbl 1350.65088 · doi:10.1007/s11075-015-0082-7
[20] He, D.; Pan, K., An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions, Comput Math Appl, 73, 2360-2374 (2017) · Zbl 1373.65056 · doi:10.1016/j.camwa.2017.04.009
[21] He, D.; Pan, K., A fifth-order combined compact difference scheme for the Stokes flow on polar geometries, E Asian J Appl Math, 7, 714-727 (2018) · Zbl 1426.76471 · doi:10.4208/eajam.200816.300517a
[22] He, D.; Pan, K., An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation, Numer Algorithms, 79, 899-925 (2018) · Zbl 1402.65088 · doi:10.1007/s11075-017-0466-y
[23] Hopf, E., The partial differential equation \(u_t+uu_x=\mu u_{xx}\), Commun Pure Appl Math, 3, 201-230 (1950) · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[24] Huang, P.; Abduwali, A., The Modified Local Crank-Nicolson method for one- and two-dimensional Burgers’ equations, Comput Math Appl, 59, 2452-2463 (2010) · Zbl 1193.65157 · doi:10.1016/j.camwa.2009.08.069
[25] Jiwari, R., Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation, Comput Phys Commun, 183, 2413-2423 (2012) · Zbl 1302.35337 · doi:10.1016/j.cpc.2012.06.009
[26] Jiwari, R., A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput Phys Commun, 188, 59-67 (2015) · Zbl 1344.65082 · doi:10.1016/j.cpc.2014.11.004
[27] Khesin, B.; Misiolek, G., Shock waves for the Burgers equation and curvatures of diffeomorphism groups, Proc Steklov I Math, 259, 73-81 (2007) · Zbl 1161.35464 · doi:10.1134/S0081543807040062
[28] Kraenkel, RA; Pereira, JG; Manna, MA, Nonlinear surface-wave excitations in the Benard-Marangoni system, Phys Rev A, 46, 4786-4790 (1992) · doi:10.1103/PhysRevA.46.4786
[29] Kumar, M.; Pandit, S., A composite scheme for the numerical simulation of coupled Burgers’ equation, Comput Phys Commun, 185, 809-817 (2014) · Zbl 1360.35117 · doi:10.1016/j.cpc.2013.11.012
[30] Kutluay, S.; Bahadir, AR, Numerical solution of one-dimensional Burgers’ equation: explicit and exact-explicit finite difference methods, J Comput Appl Math, 103, 251-261 (1999) · Zbl 0942.65094 · doi:10.1016/S0377-0427(98)00261-1
[31] Kutluay, S.; Ucar, Y., Numerical solutions of the coupled Burgers’ equation by the Galerkin quadratic B-spline finite element method, Math Methods Appl Sci, 36, 2403-2415 (2013) · Zbl 1278.65153 · doi:10.1002/mma.2767
[32] Lee, S.; Liu, J.; Sun, H., Combined compact difference scheme for linear second-order partial differential equations with mixed derivative, J Comput Appl Math, 264, 23-37 (2014) · Zbl 1294.65098 · doi:10.1016/j.cam.2014.01.004
[33] Lewis R, Nithiarasu P, Seetharamu K (2004) Fundamentals of the finite element method for heat and fluid flow. John Wiley & Sons
[34] Li, L.; Sun, H.; Tam, S., A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations, Comput Phys Commun, 187, 38-48 (2015) · Zbl 1348.35238 · doi:10.1016/j.cpc.2014.10.008
[35] Liao, W., An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation, Appl Math Comput, 206, 755-764 (2008) · Zbl 1157.65438
[36] Liao, W., A fourth-order finite-difference method for solving the system of two-dimensional Burgers’ equations, Int J Numer Methods Fluid, 64, 565-590 (2010) · Zbl 1377.65108 · doi:10.1002/fld.2163
[37] Liao, W.; Zhu, J., Efficient and accurate finite difference schemes for solving one-dimensional Burgers’ equation, Int J Comput Math, 88, 2575-2590 (2011) · Zbl 1252.65141 · doi:10.1080/00207160.2010.548519
[38] Mahesh, K., A family of high order finite difference schemes with good spectral resolution, J Comput Phys, 145, 332-358 (1998) · Zbl 0926.76081 · doi:10.1006/jcph.1998.6022
[39] Mittal, RC; Jiwari, R., A differential quadrature method for solving Burgers’-type equation, Int J Numer Methods Heat Fluids Flow, 22, 880-895 (2012) · Zbl 1357.65220 · doi:10.1108/09615531211255761
[40] Pan, K.; Jin, X.; He, D., Pointwise error estimates of a linearized difference scheme for strongly coupled fractional Ginzburg-Landau equations, Math Methods Appl Sci, 43, 512-535 (2020) · Zbl 1444.65049 · doi:10.1002/mma.5897
[41] Sari, M.; Gürarslan, G., A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation, Appl Math Comput, 208, 475-483 (2009) · Zbl 1159.65343
[42] Sari, M.; Gurarslan, G., A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation, Appl Math Comput, 208, 475-483 (2009) · Zbl 1159.65343
[43] Shandarin, SF, Three dimensional Burgers’ equation as a model for the Large-scale structure Formation in the Universe, IMA, 85, 401-413 (1997) · Zbl 0865.35117
[44] Shukl, HS; Tamsir, M., Modified cubic B-spline differential quadrature method for numerical solution of three-dimensional coupled viscous Burgers’ equation, Mod Phys Lett B, 30, 1650110 (2016) · doi:10.1142/S0217984916501104
[45] Su, NH; Watt, PC, Analysis of turbulent flow patterns of soil water under filed conditions using Burgers’ equation and porous suction-cup samplers, Aust J Soil Res, 42, 9-16 (2004) · doi:10.1071/SR02142
[46] Sun, H.; Li, L., A CCD-ADI method for unsteady convection-diffusion equations, Comput Phys Commun, 185, 790-797 (2014) · Zbl 1360.35193 · doi:10.1016/j.cpc.2013.11.009
[47] Tamsir, M.; Srivastava, VK; Jiwari, R., An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation, Appl Math Comput, 290, 111-124 (2016) · Zbl 1410.65414
[48] Varöglu, E.; Finn, WDL, Space-time finite elements incorporating characteristics for the Burgers’ equation, Int J Numer Methods Eng, 16, 171-184 (1980) · Zbl 0449.76076 · doi:10.1002/nme.1620160112
[49] Wang, QH; Pan, KJ; Hu, HL, Unique solvability of the CCD scheme for convectionCdiffusion equations with variable convection coefficients, Adv Differ Equ, 2018, 163 (2018) · Zbl 1446.65079 · doi:10.1186/s13662-018-1591-1
[50] Xie, S.; Li, G., A compact finite difference method for solving Burgers’ equation, Int J Numer Methods Fluids, 62, 747-764 (2010) · Zbl 1213.65120
[51] Yadav, OP; Jiwari, R., Finite element analysis and approximation of Burgers-Fisher equation, Numer Methods Part Differ Equ, 33, 1652-1677 (2017) · Zbl 1395.65094 · doi:10.1002/num.22158
[52] Yang, L.; Pu, X., Derivation of the Burgers’ equation from the gas dynamics, Commun Math Sci, 14, 671-682 (2016) · Zbl 1338.35399 · doi:10.4310/CMS.2016.v14.n3.a4
[53] Yue, X.; Bu, W., Fully finite element adaptive AMG method for time-space Caputo-Riesz fractional diffusion equations, Adv Appl Math Mech, 10, 1103-1125 (2018) · Zbl 1488.65484 · doi:10.4208/aamm.OA-2018-0046
[54] Yue, X.; Shu, S., Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations, Comput Math Appl, 78, 3471-3484 (2019) · Zbl 1443.65231 · doi:10.1016/j.camwa.2019.05.017
[55] Yue X, Liu M et al (2019) Space-time finite element adaptive AMG for multi-term time fractional advection diffusion equations. Math Methods Appl Sci. 10.1002/mma.5876 · Zbl 1486.65184
[56] Zabusky, NJ; Kruskal, MD, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys Rev Lett, 15, 240-243 (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[57] Zhu, H.; Shu, H.; Ding, M., Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method, Comput Math Appl, 60, 840-848 (2010) · Zbl 1201.65190 · doi:10.1016/j.camwa.2010.05.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.