×

A fifth-order combined compact difference scheme for Stokes flow on polar geometries. (English) Zbl 1426.76471

Summary: Incompressible flows with zero Reynolds number can be modeled by the Stokes equations. When numerically solving the Stokes flow in stream-vorticity formulation with high-order accuracy, it will be important to solve both the stream function and velocity components with the high-order accuracy simultaneously. In this work, we will develop a fifth-order spectral/combined compact difference (CCD) method for the Stokes equation in stream-vorticity formulation on the polar geometries, including a unit disk and an annular domain. We first use the truncated Fourier series to derive a coupled system of singular ordinary differential equations for the Fourier coefficients, then use a shifted grid to handle the coordinate singularity without pole condition. More importantly, a three-point CCD scheme is developed to solve the obtained system of differential equations. Numerical results are presented to show that the proposed spectral/CCD method can obtain all physical quantities in the Stokes flow, including the stream function and vorticity function as well as all velocity components, with fifth-order accuracy, which is much more accurate and efficient than low-order methods in the literature.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Chu, P. and Fan, C., A three-point combined compact difference scheme, J. Comput. Phys.140, 370-399 (1998). doi:10.1006/jcph.1998.5899 · Zbl 0923.65071
[2] Chen, B.Y., He, D.D. and Pan, K.J., A linearized high-order combined compact difference scheme for multi-dimensional coupled Burgers’ equations, Numer. Math.-Theory. Me. In press. · Zbl 1424.65124
[3] Denni, S.C.R. and Ng, M., Nguyen, P., Numerical solution for the steady motion of a viscous fluid inside a circular boundary using integral conditions, J. Comput. Phys.108, 142-152 (1993). doi:10.1006/jcph.1993.1169 · Zbl 0779.76052
[4] Ehrlich, L.W. and Gupta, M.M., Some difference schemes for the biharmonic equation, SIAM J. Numer. Anal.12, 773-789 (1975). doi:10.1137/0712058 · Zbl 0331.65061
[5] Greengard, L. and Kropinski, M.C., An integral equation approach to the incompressible Navier-Stokes equations in two dimensions, SIAM J. Sci. Comput.20, 318-336 (1998). doi:10.1137/S1064827597317648 · Zbl 0917.35094
[6] Gao, G.H. and Sun, H.W., Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations, Commun. Comput. Phys.17, 487-509 (2015). doi:10.4208/cicp.180314.010914a · Zbl 1388.65052
[7] Gao, G.H. and Sun, H.W., Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys.298, 520-538 (2015). doi:10.1016/j.jcp.2015.05.052 · Zbl 1349.65294
[8] He, D. D., An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation, Numer. Algorithms, 72, 1103-1117, (2016) · Zbl 1350.65088 · doi:10.1007/s11075-015-0082-7
[9] He, D.D. and Pan, K.J., An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions, Comput. Math. Appl.73, 2360-2374 (2017). doi:10.1016/j.camwa.2017.04.009 · Zbl 1373.65056
[10] Hanse, M.O.L. and Shen, W.Z., Vorticity-velocity formulation of the 3D Navier-Stokes equations in cylindrical co-ordinates, Int. J. Numer. Meth. Fl.41, 29-45 (2003). doi:10.1002/fld.422 · Zbl 1025.76027
[11] Huang, W. and Tang, T., Pseudospectral solutions for steady motion of a viscous fluid inside a circular boundary, Appl. Numer. Math.33, 167-173 (2000). doi:10.1016/S0168-9274(99)00080-X · Zbl 0994.76074
[12] Ito, K. and Qiao, Z.H., A high order compact MAC finite difference scheme for the Stokes equations: Augmented variable approach, J. Comput. Phys.227, 8177-8190 (2008). doi:10.1016/j.jcp.2008.05.021 · Zbl 1143.76044
[13] Kohr, M. and Pop, I., Viscous incompressible flow for low Reynolds numbers, WIT, Southampton, Boston, 2004. · Zbl 1064.76001
[14] Karageorghis, A. and Tang, T., A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries, Comput. Fluids25, 541-549 (1996). doi:10.1016/0045-7930(96)00006-0 · Zbl 0892.76064
[15] Lai, M. C., A simple compact fourth-order poisson solver on polar geometry, J. Comput. Phys., 182, 337-345, (2002) · Zbl 1016.65093 · doi:10.1006/jcph.2002.7172
[16] Lai, M. C., Fourth-order finite difference scheme for the incompressible Navier-Stokes equations in a disk, Int. J. Numer. Meth. Fl., 42, 909-922, (2003) · Zbl 1078.76050 · doi:10.1002/fld.558
[17] Lai, M.C., Lin, W.W. and Wang, W., A fast spectral/difference method without pole conditions for Poisson-type equations in cylindrical and spherical geometries, IMA J. Numer. Anal.22, 537-548 (2002). doi:10.1093/imanum/22.4.537 · Zbl 1011.65084
[18] Lai, M.C. and Liu, H.C., Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows, Appl. Math. Comput.164, 679-695 (2005). · Zbl 1070.65121
[19] Lopez, J.M., Marques, F. and Shen, J., An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries: II. three-dimensional cases, J. Comput. Phys.176, 384-401 (2002). doi:10.1006/jcph.2002.6993 · Zbl 1130.76392
[20] Lopez, J.M. and Shen, J., An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries: I. axisymmetric cases, J. Comput. Phys.139, 308-326 (1998). doi:10.1006/jcph.1997.5872 · Zbl 0908.76068
[21] Lai, M.C. and Wang, W.C., Fast direct solvers for Poisson equation on 2D polar and spherical geometries, Numer. Meth. Part. D. E.18, 56-68 (2002). doi:10.1002/num.1038 · Zbl 0993.65114
[22] Mahesh, K., A family of high order finite difference schemes with good spectral resolution, J. Comput. Phys., 145, 332-358, (1998) · Zbl 0926.76081 · doi:10.1006/jcph.1998.6022
[23] Mohseni, K. and Colonius, T., Numerical treatment of polar coordinate singularities, J. Comput. Phys.157, 787-795 (2000). doi:10.1006/jcph.1999.6382 · Zbl 0981.76075
[24] Nygård, F. and Andersson, H.I., On pragmatic parallelization of a serial Navier-Stokes solver in cylindrical coordinates, Int. J. Numer. Method. H.22, 503-511 (2012). doi:10.1108/09615531211215783 · Zbl 1356.76207
[25] Nihei, T. and Ishii, K., A fast solver of the shallow water equations on a sphere using a combined compact difference scheme, J. Comput. Phys.187, 639-659 (2003). doi:10.1016/S0021-9991(03)00152-9 · Zbl 1061.76513
[26] Purcell, E. M., Life at low Reynolds number, Am. J. Phys., 45, 3-11, (1977) · doi:10.1119/1.10903
[27] Pandit, S.K. and Karmakar, H., An efficient implicit compact streamfunction velocity formulation of two dimensional flows, J. Sci. Comput.68, 653-688 (2016). doi:10.1007/s10915-015-0154-9 · Zbl 1397.76096
[28] Pulicani, J.P. and Ouazzani, J., A Fourier-Chebyshev pseudospectral method for solving steady 3-D Navier-Stokes and heat equations in cylindrical cavities, Comput. Fluids20, 93-109 (1991). doi:10.1016/0045-7930(91)90014-9 · Zbl 0731.76056
[29] Sha, W., Nakabayashi, K. and Ueda, H., An accurate second-order approximation factorization method for time-dependent incompressible Navier-Stokes equations in spherical polar coordinates, J. Comput. Phys.142, 47-66 (1998). doi:10.1006/jcph.1998.5921 · Zbl 0935.76063
[30] Sun, H.W. and Li, L.Z., A CCD-ADI method for unsteady convection-diffusion equations, Comput. Phys. Commun.185, 790-797 (2014). doi:10.1016/j.cpc.2013.11.009 · Zbl 1360.35193
[31] Lee, S.T., Liu, J. and Sun, H.W., Combined compact difference scheme for linear second-order partial differential equations with mixed derivative, J. Comput. Appl. Math.264, 23-37 (2014). doi:10.1016/j.cam.2014.01.004 · Zbl 1294.65098
[32] Sengupta, T.K., Lakshmanan, V. and Vijay, V., A new combined stable and dispersion relation preserving compact scheme for non-periodic problems, J. Comput. Phys.228, 3048-3071 (2009). doi:10.1016/j.jcp.2009.01.003 · Zbl 1282.76142
[33] Sengupta, T.K., Vijay, V. and Bhaumik, S., Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties, J. Comput. Phys.228, 6150-6168 (2009). doi:10.1016/j.jcp.2009.05.038 · Zbl 1173.76034
[34] Torres, D.J. and Coutsias, E.A., Pseudospectral solution of the two-dimensional Navier-Stokes equations in a disk, SIAM J. Sci. Comput.21, 378-403 (1999). doi:10.1137/S1064827597330157 · Zbl 0949.76065
[35] Tian, Z.F. and Yu, P.X., An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations, J. Comput. Phys.230, 6404-6419 (2011). doi:10.1016/j.jcp.2010.12.031 · Zbl 1408.76394
[36] Verzicco, R. and Orlandi, P., A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates, J. Comput. Phys.123, 402-414 (1996). doi:10.1006/jcph.1996.0033 · Zbl 0849.76055
[37] Yu, P.X. and Tian, Z.F., A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier-Stokes equations in polar coordinaes, J. Sci. Comput.56, 165-189 (2013). doi:10.1007/s10915-012-9667-7 · Zbl 1266.76037
[38] Zielinski, A. P., On trial functions applied in the generalized Trefftz method, Adv. Eng. Software, 24, 147-155, (1995) · Zbl 0980.65516 · doi:10.1016/0965-9978(95)00066-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.