×

An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation. (English) Zbl 1402.65088

Summary: In this paper, we propose a linearized implicit finite difference scheme for solving the fractional Ginzburg-Landau equation. The scheme, which involves three time levels, is unconditionally stable and second-order accurate in both time and space variables. Moreover, the unique solvability, the unconditional stability, and the convergence of the method in the \(L^{\infty}\)-norm are proved by the energy method and mathematical induction. Compared with the implicit midpoint difference scheme [P. Wang and C. Huang, J. Comput. Phys. 312, 31–49 (2016; Zbl 1351.76191)], current linearized method generally reduces the computational cost. Finally, numerical results are presented to confirm the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q56 Ginzburg-Landau equations
35R11 Fractional partial differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1351.76191
Full Text: DOI

References:

[1] Aranson, IS; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, 99-143, (2002) · Zbl 1205.35299 · doi:10.1103/RevModPhys.74.99
[2] Duan, J.; Titi, E.; Holmes, P., Regularity approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity, 6, 915-933, (1993) · Zbl 0808.35133 · doi:10.1088/0951-7715/6/6/005
[3] Duan, J.; Holmes, P.; Titi, E., Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 5, 1303-1314, (1992) · Zbl 0783.35070 · doi:10.1088/0951-7715/5/6/005
[4] Doering, CR; Gibbon, JD; Levermore, CD, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71, 285-318, (1994) · Zbl 0810.35119 · doi:10.1016/0167-2789(94)90150-3
[5] Gao, H.; Lin, G.; Duan, J., Asymptotics for the generalized two-dimensional Ginzburg-Landau equation, J. Math. Anal. Appl., 247, 198-216, (2000) · Zbl 0952.35035 · doi:10.1006/jmaa.2000.6848
[6] Guo, B.; Wang, G.; Li, D., The attractor of the stochastic generalized Ginzburg-Landau equation, Sci. China Ser. A, 51, 955-964, (2008) · Zbl 1154.35318 · doi:10.1007/s11425-007-0181-6
[7] Huo, Z.; Jia, Y., Global well-posedness for the generalized 2D Ginzburg-Landau equation, J. Differ. Equations, 247, 260-276, (2009) · Zbl 1173.35305 · doi:10.1016/j.jde.2009.03.015
[8] Tarasov, V.; Zaslavsky, G., Fractional Ginzburg-Landau equation for fractal media, Physica A, 354, 249-261, (2005) · doi:10.1016/j.physa.2005.02.047
[9] Tarasov, V.; Zaslavsky, G., Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16, 023110, (2006) · Zbl 1152.37345 · doi:10.1063/1.2197167
[10] Milovanov, A.; Rasmussen, J., Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett. A, 337, 75-80, (2005) · Zbl 1135.82320 · doi:10.1016/j.physleta.2005.01.047
[11] Mvogo, A.; Tambue, A.; Ben-Bolie, G.; Kofane, T., Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation, Commun. Nonlinear Sci., 39, 396-410, (2016) · Zbl 1510.35320 · doi:10.1016/j.cnsns.2016.03.008
[12] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200-218, (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[13] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 1760-1781, (2009) · Zbl 1204.26013 · doi:10.1137/080730597
[14] Wang, D.; Xiao, A.; Yang, W., Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242, 670-681, (2013) · Zbl 1297.65100 · doi:10.1016/j.jcp.2013.02.037
[15] Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[16] Xu, Y.; Agrawal, O., Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation, Fract. Calc. Appl Anal., 16, 709-736, (2013) · Zbl 1312.65141 · doi:10.2478/s13540-013-0045-4
[17] He, D.; Pan, K., An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions, Comput. Math. Appl., 73, 2360-2374, (2017) · Zbl 1373.65056 · doi:10.1016/j.camwa.2017.04.009
[18] Tarasov, V., Psi-series solution of fractional Ginzburg-Landau equation, J. Phys. A-Math. Gen., 39, 8395-8407, (2006) · Zbl 1122.34003 · doi:10.1088/0305-4470/39/26/008
[19] Pu, X.; Guo, B., Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Appl. Anal., 92, 318-334, (2013) · Zbl 1293.35310 · doi:10.1080/00036811.2011.614601
[20] Guo, B.; Huo, Z., Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation, Fract. Calc. Appl. Anal., 16, 226-242, (2013) · Zbl 1312.35180
[21] Lu, H.; Lö, S.; Feng, Z., Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation, Int. J. Bifurcat. Chaos, 13, 1350202, (2013) · Zbl 1284.35456 · doi:10.1142/S0218127413502027
[22] Millot, V.; Sire, Y., On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. An., 215, 125-210, (2015) · Zbl 1372.35291 · doi:10.1007/s00205-014-0776-3
[23] Lord, GJ, Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation, SIAM J. Numer. Anal., 34, 1483-1512, (1997) · Zbl 0888.65104 · doi:10.1137/S003614299528554X
[24] Xu, Q.; Chang, Q., Difference methods for computing the Ginzburg-Landau equation in two dimensions, Numer. Meth. Part. D. E., 27, 507-528, (2011) · Zbl 1218.65089 · doi:10.1002/num.20535
[25] Wang, T.; Guo, B., Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation, Numer. Meth. Part. D. E., 27, 1340-1363, (2011) · Zbl 1233.65062 · doi:10.1002/num.20588
[26] Zhang, L., Long time behavior of difference approximations for the two-dimensional complex Ginzburg-Landau equation, Numer. Func. Anal. Opt., 31, 1190-1211, (2010) · Zbl 1410.65335 · doi:10.1080/01630563.2010.510974
[27] Zhang, Y.; Sun, Z.; Wang, T., Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer. Meth. Part. D. E., 29, 1487-1503, (2013) · Zbl 1274.65262 · doi:10.1002/num.21763
[28] Hao, Z.; Sun, Z.; Cao, W., A three-level linearized compact difference scheme for the Ginzburg-Landau equation, Numer. Meth. Part. D. E., 31, 876-899, (2015) · Zbl 1320.65116 · doi:10.1002/num.21925
[29] Wang, P.; Huang, C., An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation, J. Comput. Phys., 312, 31-49, (2016) · Zbl 1351.76191 · doi:10.1016/j.jcp.2016.02.018
[30] Hao, Z.; Sun, Z., A linearized high-order difference scheme for the fractional Ginzburg-Landau equation, Numer. Meth. Part. D. E., 33, 105-124, (2017) · Zbl 1359.65150 · doi:10.1002/num.22076
[31] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77, (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[32] Meerschaert, MM; Scheffler, H-P; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249-261, (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[33] Meerschaert, MM; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 80-90, (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[34] Ilić, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation, Fract. Calc. Appl. Anal., 8, 323-341, (2005) · Zbl 1126.26009
[35] Yang, Q.; Turner, I.; Liu, F.; Ilis, M., Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33, 1159-1180, (2011) · Zbl 1229.35315 · doi:10.1137/100800634
[36] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximation for solving space fractional diffusion equations, Math. Comput., 84, 1703-1727, (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[37] Zhou, H.; Tian, W.; Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 56, 45-66, (2013) · Zbl 1278.65130 · doi:10.1007/s10915-012-9661-0
[38] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximations of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217, 2534-2545, (2010) · Zbl 1206.65234
[39] Ortigueira, Manuel Duarte, Riesz potential operators and inverses via fractional centred derivatives, International Journal of Mathematics and Mathematical Sciences, 2006, 1-12, (2006) · Zbl 1122.26007 · doi:10.1155/IJMMS/2006/48391
[40] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 1743-1750, (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[41] Shen, S.; Liu, F.; Anh, V.; Turner, I.; Chen, J., A novel numerical approximation for the Riesz space fractional advection-dispersion equation, IMA J. Appl. Math., 79, 431-444, (2014) · Zbl 1297.65098 · doi:10.1093/imamat/hxs073
[42] Wang, P.; Huang, C.; Zhao, L., Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306, 231-247, (2016) · Zbl 1382.65260 · doi:10.1016/j.cam.2016.04.017
[43] Wang, D.; Xiao, A.; Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257, 241-251, (2015) · Zbl 1339.65137
[44] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251, (2015) · Zbl 1349.65346 · doi:10.1016/j.jcp.2014.03.037
[45] Wang, P.; Huang, C., A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms., 69, 625-641, (2015) · Zbl 1325.65127 · doi:10.1007/s11075-014-9917-x
[46] Ran, M.; Zhang, C., A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator, Int. J. Comput. Math., 93, 1103-1118, (2015) · Zbl 1390.65079 · doi:10.1080/00207160.2015.1016924
[47] Du, Q.; Gunzburger, M.; Lehoucq, RB; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 667-696, (2012) · Zbl 1422.76168 · doi:10.1137/110833294
[48] Holte, JM, Discrete Gronwall lemma and applications, MAA-NCS meeting at the University of North Dakota, 24, 1-7, (2009)
[49] He, D.; Pan, K., A linearly implicit conservative difference scheme for the generalized rosenau-kawahara-RLW equation, Appl. Math. Comput., 271, 323-336, (2015) · Zbl 1410.65312
[50] Akhmediev, NN; Afanasjev, VV; Soto-Crespo, JM, Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53, 1190-1201, (1996) · doi:10.1103/PhysRevE.53.1190
[51] Pan, K.; He, D.; Hu, H.; Ren, Z., A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems, J. Comput. Phys., 344, 499-515, (2017) · Zbl 1380.65407 · doi:10.1016/j.jcp.2017.04.069
[52] Pan, K.; He, D.; Hu, H., An extrapolation cascadic multigrid method combined with a fourth-order compact scheme for 3D Poisson equation, J. Sci. Comput., 70, 1180-1203, (2017) · Zbl 1366.65095 · doi:10.1007/s10915-016-0275-9
[53] Hu, H.; Ren, Z.; He, D.; Pan, K., On the convergence of an extrapolation cascadic multigrid method for elliptic problems, Comput. Math. Appl., 74, 759-771, (2017) · Zbl 1384.65087 · doi:10.1016/j.camwa.2017.05.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.