×

Small-amplitude limit cycles of certain planar differential systems. (English) Zbl 1447.34031

Consider the planar system \begin{align*} \frac{dx}{dt}&= -y+xf(y), \\ \frac{dy}{dt}&= x+yf(x)\tag{1} \end{align*} under the assumption \(f(0)=0\) and that \(f\) is real analytic \(f(x)=\sum_{k=1}^{\infty}\alpha_kz^k.\) The authors prove
(i)
The origin of (1) is a center if \(f\) is odd.
(ii)
Let \(f\) be of degree \(n\). Then the cyclicity of the origin is \(\big[\frac{n}{2}\big]\), that is, the maximum number of limit cycles which can bifurcate from the origin is \(\big[\frac{n}{2}\big]\), there is an analytic perturbation of (1) such that \(\big[\frac{n}{2}\big]\) limit cycles bifurcate from the origin.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Algaba, A.; García, C.; Giné, J., Geometric criterium in the center problem, Mediterr. J. Math., 13, 5, 2593-2611 (2016) · Zbl 1356.34035 · doi:10.1007/s00009-015-0641-0
[2] Cherkas, LA, On the conditions for a center for certain equations of the form \(yy^{\prime }= P(x)+Q(x)y+ R(x)y^2\), Differ. Equ., 8, 1104-1107 (1974) · Zbl 0299.34036
[3] Cherkas, LA, Estimation of the number of limit cycles of autonomous systems, Differ. Equ., 13, 529-547 (1977) · Zbl 0395.34025
[4] Christopher, CJ, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 229, 319-329 (1999) · Zbl 0921.34033 · doi:10.1006/jmaa.1998.6175
[5] Christopher, C.J.: Estimating limit cycle bifurcations from centers, differential equations with symbolic computation. In: Trends in Mathematics, vol. 30, pp. 23-35 (2006)
[6] Christopher, C.J., Li, C.: Limit cycles of differential equations. In: Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser-Verlag, Basel (2007) · Zbl 1359.34001
[7] Christopher, CJ; Lloyd, NG, Small-amplitude limit cycles in polynomial Liénard systems, NoDEA Nonlinear Differ. Eq. Appl., 3, 183-190 (1996) · Zbl 0855.34030 · doi:10.1007/BF01195913
[8] Christopher, C.; Schlomiuk, D., On general algebraic mechanisms for producing centers in polynomial differential systems, J. Fixed Point Theory Appl., 3, 2, 331-351 (2008) · Zbl 1162.34022 · doi:10.1007/s11784-008-0077-2
[9] Cima, A.; Gasull, A.; Mañosas, F., A Note on the Lyapunov and Period Constants, Qual. Theory Dyn. Syst., 19, 1, 44 (2020) · Zbl 1447.34030 · doi:10.1007/s12346-020-00375-4
[10] Gasull, A.: Differential equations that can be transformed into equations of Liénard type. In: 17 Colóquio Brasileiro de Matemática (1989)
[11] Gasull, A.; Giné, J.; Grau, M., Multiplicity of limit cycles and analytic \(m\)-solutions for planar differential systems, J. Differ. Equ., 240, 375-398 (2007) · Zbl 1345.34037 · doi:10.1016/j.jde.2007.05.037
[12] Gasull, A.; Giné, J.; Torregrosa, J., Center problem for systems with two monomial nonlinearities, Commun. Pure Appl. Anal., 15, 2, 577-598 (2016) · Zbl 1388.34024 · doi:10.3934/cpaa.2016.15.577
[13] Gasull, A., Giné, J., Valls, C.: Highest weak focus order for trigonometric Liénard equations. Ann. Mat. Pura Appl. (2020). 10.1007/s10231-019-00936-8 · Zbl 1450.34022
[14] Gasull, A.; Torregrosa, J., Small-amplitude limit cycles in Liénard systems via multiplicity, J. Differ. Equ., 159, 186-211 (1999) · Zbl 0947.34014 · doi:10.1006/jdeq.1999.3649
[15] Giné, J., The nondegenerate center problem and the inverse integrating factor, Bull. Sci. Math., 130, 2, 152-161 (2006) · Zbl 1102.34001 · doi:10.1016/j.bulsci.2005.09.001
[16] Giné, J., The center problem for a linear center perturbed by homogeneous polynomials, Acta Math. Sin. (Engl. Ser.), 22, 6, 1613-1620 (2006) · Zbl 1124.34326 · doi:10.1007/s10114-005-0623-4
[17] Giné, J.; Maza, S., The reversibility and the center problem, Nonlinear Anal., 74, 2, 695-704 (2011) · Zbl 1219.34049 · doi:10.1016/j.na.2010.09.028
[18] Giné, J.; Valls, C., The generalized polynomial Moon-Rand system, Nonlinear Anal. Real World Appl., 39, 411-417 (2018) · Zbl 1398.34046 · doi:10.1016/j.nonrwa.2017.07.006
[19] Han, M.; Tian, Y.; Yu, P., Small-amplitude limit cycles of polynomial Liénard systems, Sci. China Math., 56, 8, 1543-1556 (2013) · Zbl 1355.34068 · doi:10.1007/s11425-013-4618-9
[20] Jiang, J.; Han, M., Small-amplitude limit cycles of some Liénard-type systems, Nonlinear Anal., 71, 12, 6373-6377 (2009) · Zbl 1279.34046 · doi:10.1016/j.na.2009.09.011
[21] Lins Neto, A., de Melo, W., Pugh, C.C.: On Liénard equations. In: Proceedings of the Symposium on Geometry and Topology, Lectures Notes in Mathematics, vol. 597. Springer, New York, pp 335-357 (1977)
[22] Lloyd, NG; Lynch, S., Small amplitude limit cycles of certain Liénard systems, Proc. R. Soc. Lond. Ser. A, 418, 199-208 (1988) · Zbl 0657.34030
[23] Romanovski, VG; Shafer, DS, The Center and Cyclicity Problems: Acomputational Algebra Approach (2009), Boston: Birkhäuser, Boston · Zbl 1192.34003
[24] Ye, Y.Q., Cai, S.L., Chen, L.S., Huang, K.C., Luo, D.J., Ma, Z.E., Wang, E.N., Wang, M.S., Yang, X.A.: Theory of Limit Cycles, 2nd ed., Transl. Mathematical Monographs, vol. 66. American Mathematical Society, Providence, (1986) · Zbl 0588.34022
[25] Zhang, Z.-F., Ding, T.-R., Huang, W.-Z., Dong, Z.-X.: Qualitative Theory of Differential Equations, Transl. Mathematical Monographs, vol. 101. American Mathematical Society, Providence (1992) · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.