×

Highest weak focus order for trigonometric Liénard equations. (English) Zbl 1450.34022

In this paper, the authors generalize some results about the highest weak focus order of the system \[\dot x=y, \quad \dot y=g(x)+yf(x),\] where \(f\) and \(g\) are polynomials with given degrees.
Concretely, the authors consider the systems \[\dot \theta=y, \quad \dot y=G'(\theta)+yF'(\theta),\] where \(F\) and \(G\) are trigonometric polynomials. They use the transformation \(\tan \theta=x\) to change the above systems to polynomial systems and try to use the results of polynomial systems, at last they can estimate the smallest upper bounds of weak focus order, sometimes, the upper bounds are sharp.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Alwash, MAM, On a condition for a centre of cubic nonautonomous equations, Proc. R. Soc. Edinb. Sect. A, 113, 289-291 (1989) · Zbl 0685.34025 · doi:10.1017/S030821050002415X
[2] Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maĭer, A.G.: Theory of bifurcations of dynamic systems on a plane. Translated from the Russian. Halsted Press (A division of John Wiley & Sons), New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, (1973). xiv+482 pp · Zbl 0282.34022
[3] Arnol’d, VI; Gusein-Zade, SM; Varchenko, A., Singularités des applications différentiables (1982), Moscow: Mir, Moscow
[4] Belykh, VN; Pedersen, NF; Soerensen, OH, Shunted-Josephson-junction model. I. The autonomous case, Phys. Rev. B, 16, 4853-4859 (1977) · doi:10.1103/PhysRevB.16.4853
[5] Briskin, M.; Françoise, J-P; Yomdin, Y., The Bautin ideal of the Abel equation, Nonlinearity, 11, 431-443 (1998) · Zbl 0905.34051 · doi:10.1088/0951-7715/11/3/003
[6] Chavarriga, J., Integrable systems in the plane with center type linear part Appl, Math. (Warsaw), 22, 285-309 (1994) · Zbl 0809.34002 · doi:10.4064/am-22-2-285-309
[7] Cherkas, LA, Conditions for a Liénard equation to have a centre, Differ. Equ., 12, 201-206 (1976) · Zbl 0353.34031
[8] Christopher, C., An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 229, 319-329 (1999) · Zbl 0921.34033 · doi:10.1006/jmaa.1998.6175
[9] Christopher, CJ; Lloyd, NG, Small-amplitude limit cycles in polynomial Liénard systems, NoDEA, 3, 183-190 (1996) · Zbl 0855.34030 · doi:10.1007/BF01195913
[10] Christopher, CJ; Lloyd, NG; Pearson, JM, On a Cherkas’s method for centre conditions, Nonlinear World, 2, 459-469 (1995) · Zbl 0833.34023
[11] Christopher, C.; Lynch, S., Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12, 1099-1112 (1999) · Zbl 1074.34522 · doi:10.1088/0951-7715/12/4/321
[12] Cima, A.; Gasull, A.; Mañosas, F., A simple solution of some composition conjectures for abel equations, J. Math. Anal. Appl., 398, 477-486 (2013) · Zbl 1269.34035 · doi:10.1016/j.jmaa.2012.09.006
[13] Cima, A.; Gasull, A.; Mañosas, F., An explicit bound of the number of vanishing double moments forcing composition, J. Differ. Equ., 255, 339-350 (2013) · Zbl 1290.34015 · doi:10.1016/j.jde.2013.04.009
[14] Gasull, A.; Geyer, A.; Mañosas, F., On the number of limit cycles for perturbed pendulum equations, J. Differ. Equ., 261, 2141-2167 (2016) · Zbl 1346.34029 · doi:10.1016/j.jde.2016.04.025
[15] Gasull, A.; Giné, J.; Valls, C., Center problem for trigonometric Liénard systems, J. Differ. Equ., 263, 3928-3942 (2017) · Zbl 1371.34043 · doi:10.1016/j.jde.2017.05.008
[16] Gasull, A.; Guillamon, A.; Mañosa, V., An explicit expression of the first Liapunov and period constants with applications, J. Math. Anal. Appl., 211, 190-212 (1997) · Zbl 0882.34040 · doi:10.1006/jmaa.1997.5455
[17] Gasull, A.; Torregrosa, J., Small-amplitude limit cycles in Liénard systems via multiplicity, J. Differ. Equ., 159, 186-211 (1999) · Zbl 0947.34014 · doi:10.1006/jdeq.1999.3649
[18] Gasull, A.; Torregrosa, J., A new approach to the computation of the Lyapunov constants, the geometry of differential equations and dynamical systems, Comput. Appl. Math., 20, 149-177 (2001) · Zbl 1127.34318
[19] Giné, J., On some open problems in planar differential systems and Hilbert’s 16th problem, Chaos Solitons Fractals, 31, 5, 1118-1134 (2007) · Zbl 1149.34023 · doi:10.1016/j.chaos.2005.10.057
[20] Giné, J.; Grau, M.; Llibre, J., Universal centres and composition conditions, Proc. Lond. Math. Soc. (3), 106, 3, 481-507 (2013) · Zbl 1277.34034 · doi:10.1112/plms/pds050
[21] Giné, J.; Santallusia, X., Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math., 166, 2, 465-476 (2004) · Zbl 1051.65125 · doi:10.1016/j.cam.2003.08.043
[22] Hassard, B.; Wan, YH, Bifurcation formulae derived from center manifold theory, J. Math. Anal. Appl., 63, 297-312 (1978) · Zbl 0435.34034 · doi:10.1016/0022-247X(78)90120-8
[23] Inoue, K., Perturbed motion of a simple pendulum, J. Phys. Soc. Jpn., 57, 1226-1237 (1988) · doi:10.1143/JPSJ.57.1226
[24] Lichardová, H., Limit cycles in the equation of whirling pendulum with autonomous perturbation, Appl. Math., 44, 271-288 (1999) · Zbl 1060.34504 · doi:10.1023/A:1023080513150
[25] Morozov, AD, Quasi-conservative Systems. Cycles, Resonances and Chaos, World Scientific Series on Nonlinear Science (1998), River Edge: World Scientific Publishing, River Edge · Zbl 0914.58012
[26] Pearson, JM; Lloyd, NG; Christopher, CJ, Algorithmic derivation of centre conditions, SIAM Rev., 38, 619-636 (1996) · Zbl 0876.34033 · doi:10.1137/S0036144595283575
[27] Roussarie, R., Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem (1998), Basel: Birkhäuser Verlag, Basel · Zbl 0898.58039
[28] Sanders, JA; Cushman, R., Limit cycles in the Josephson equation, SIAM J. Math. Anal., 17, 495-511 (1986) · Zbl 0604.58041 · doi:10.1137/0517039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.