×

Site monotonicity and uniform positivity for interacting random walks and the spin \(O(N)\) model with arbitrary \(N\). (English) Zbl 1445.60075

Summary: We provide a uniformly-positive point-wise lower bound for the two-point function of the classical spin \(O(N)\) model on the torus of \(\mathbb{Z}^d\), \(d\geq 3\), when \(N\in\mathbb{N}_{>0}\) and the inverse temperature \(\beta\) is large enough. This is a new result when \(N>2\) and extends the classical result of J. Fröhlich et al. [“Infrared bounds, phase transitions and continuous symmetry breaking”, Commun. Math. Phys. 50, 79–95 (1976)]. Our bound follows from a new site-monotonicity property of the two-point function which is of independent interest and holds not only for the spin \(O(N)\) model with arbitrary \(N \in \mathbb{N}_{>0}\), but for a wide class of systems of interacting random walks and loops, including the loop \(O(N)\) model, random lattice permutations, the dimer model, the double-dimer model, and the loop representation of the classical spin \(O(N)\) model.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)

References:

[1] Betz, V., Taggi, L.: Scaling limit of a self-avoiding walk interacting with random spatial permutations. arXiv:1612.07234 (2017) · Zbl 1434.82014
[2] Betz, V., Random permutations of a regular lattice, J. Stat. Phys., 155, 1222-1248 (2014) · Zbl 1302.82038 · doi:10.1007/s10955-014-0945-7
[3] Betz, V., Schäfer, H., Taggi, L.: Interacting self-avoiding polygons. arXiv:1805.08517 (2018) · Zbl 1434.60272
[4] Benassi, C., Ueltschi, D.: Loop correlations in random wiremodels. arXiv:1807.06564 (2018) (accepted for publication on Commun. Math. Phys.) · Zbl 1439.82010
[5] Biskup, M., Reflection positivity and phase transitions in lattice spin models in methods of contemporary mathematical statistical physics, Lect. Notes Math., 1970, 1-86 (2009) · Zbl 1180.82041 · doi:10.1007/978-3-540-92796-9_1
[6] Brydges, D.; Fröhlich, J.; Spencer, T., The random walk representation of classical spin systems and correlation inequalities Comm, Math. Phys., 83, 1, 123-150 (1982) · doi:10.1007/BF01947075
[7] Chayes, L.; Pryadko, LP; Schtengel, K., Intersecting loop models on \({\mathbb{Z}}^d\): rigorous results, Nucl. Phys. B, 570, 3, 590-614 (2000) · Zbl 1068.82504 · doi:10.1016/S0550-3213(99)00780-4
[8] Duminil-Copin, H.; Peled, R.; Samotij, W.; Spinka, Y., Exponential decay of loop lengths in the loop \(O(n)\) model with large \(n\), Commun. Math. Phys., 349, 3, 777-817 (2017) · Zbl 1359.82007 · doi:10.1007/s00220-016-2815-4
[9] Duminil-Copin, H., Peled, R., Glazman, A., Spinka, Y.: Macroscopic loops in the loop O(n) model at Nienhuis’ critical point. arXiv:1707.09335 (2018) · Zbl 1477.60137
[10] Dyson, FJ; Lieb, EH; Simon, B., Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., 18, 335-383 (1978) · doi:10.1007/BF01106729
[11] Estelle, B.; Pavel, B., Exact solution of the classical dimer model on a triangular lattice: Monomer-Monomer correlations, Commun. Math. Phys., 356, 2, 397-425 (2017) · Zbl 1377.82009 · doi:10.1007/s00220-017-2985-8
[12] Feynman, R., Atomic theory of the \(\lambda\) transition in Helium, Phys. Rev., 91, 1291-1301 (1953) · Zbl 0053.48001 · doi:10.1103/PhysRev.91.1291
[13] Fröhlich, J.; Simon, B.; Spencer, T., Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys., 50, 79-95 (1976) · doi:10.1007/BF01608557
[14] Friedli, S.; Velenik, Y., Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (2017), Cambridge: Cambridge University Press, Cambridge
[15] Ginibre, J., General formulation of Griffiths’ inequalities, Commun. Math. Phys., 16, 4, 310-328 (1970) · doi:10.1007/BF01646537
[16] Glazman, A., Manolescu, I.: Uniform Lipschitz functions on the triangular lattice have logarithmic variations. arXiv:1810.05592 (2018) · Zbl 1470.60278
[17] Glazman, A., Manolescu, I.: Exponential decay in the loop O(n) model: \(n>1, x < \sqrt{1/ 3} + \epsilon (n)\). arXiv:1810.11302 (2018) · Zbl 1469.60330
[18] Hegerfeldt, GC, Correlation inequalities for ising ferromagnets with symmetries, Commun. Math. Phys., 57, 259-266 (1977) · doi:10.1007/BF01614166
[19] Lebowitz, JL, GHS and other inequalities, Commun. Math. Phys., 35, 87 (1974) · doi:10.1007/BF01646608
[20] Kasteleyn, PW, The statistics of dimers on a lattice. The number of dimer arrangements on a quadratic lattice, Physica, 27, 1209-1225 (1961) · Zbl 1244.82014 · doi:10.1016/0031-8914(61)90063-5
[21] Griffiths, RB, Correlations in Ising ferromagnets, J. Math. Phys., 8, 478 (1967) · doi:10.1063/1.1705219
[22] Kenyon, C.; Randall, D.; Sinclair, A., Approximating the number of Monomer-Dimer coverings of a lattice, J. Stat. Phys., 83, 637-659 (1996) · Zbl 1081.82523 · doi:10.1007/BF02183743
[23] Kenyon, R., Conformal invariance of loops in the double-dimer model, Commun. Math. Phys., 326, 2, 477-497 (2014) · Zbl 1283.05218 · doi:10.1007/s00220-013-1881-0
[24] Kenyon, R.: An introduction to the dimer model, Lecture notes from a minicourse given at the ICTP in (May 2002). arXiv:math/0310326
[25] Kenyon, R.; Sheffield, S., Dimers, tilings and trees, J. Combin. Theory Ser. B, 92, 2, 295-317 (2004) · Zbl 1055.05032 · doi:10.1016/j.jctb.2004.07.001
[26] Messager, A.; Miracle-Sole, S., Correlation functions and boundary conditions in the Ising ferromagnet, J. Stat. Phys., 17, 4, 245-262 (1977) · doi:10.1007/BF01040105
[27] Peled, R., Spinka, Y.: Lectures on the spin and loop O(n) models. arXiv:1708.00058 (2017) · Zbl 1446.82019
[28] Peierls, RE, On Ising’s ferromagnet model, Proc. Camb. Philos. Soc., 32, 477-481 (1936) · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[29] Madras, N.; Slade, G., The Self-Avoiding Walk. Modern Birkäuser Classics (1996), Berlin: Springer, Berlin · Zbl 0872.60076
[30] Symanzik, K., Euclidean quantum field theory. I. Equations for a scalar model, J. Math. Phys., 7, 510-525 (1966) · doi:10.1063/1.1704960
[31] Temperley, HNV; Fisher, ME, Dimer problem in statistical mechanics—an exact result, Philos. Mag., 6, 68, 1061-1063 (1961) · Zbl 0126.25102 · doi:10.1080/14786436108243366
[32] Taggi, L., Shifted critical threshold in the loop O(n) model at arbitrarily small n, Electr. Commun. Probab., 23, 96, 1-9 (2018) · Zbl 1419.82018
[33] Ueltschi, D., Relation between Feynman cycles and off-diagonal long-range order, Phys. Rev. Lett., 97, 170601 (2006) · Zbl 1228.82016 · doi:10.1103/PhysRevLett.97.170601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.