Skip to main content
Log in

Site Monotonicity and Uniform Positivity for Interacting Random Walks and the Spin O(N) Model with Arbitrary N

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a uniformly-positive point-wise lower bound for the two-point function of the classical spin O(N) model on the torus of \(\mathbb {Z}^d\), \(d \ge 3\), when \(N \in \mathbb {N}_{>0}\) and the inverse temperature \(\beta \) is large enough. This is a new result when \(N>2\) and extends the classical result of Fröhlich et al. (Commun Math Phys 50:79–95, 1976). Our bound follows from a new site-monotonicity property of the two-point function which is of independent interest and holds not only for the spin O(N) model with arbitrary \(N \in \mathbb {N}_{>0}\), but for a wide class of systems of interacting random walks and loops, including the loop O(N) model, random lattice permutations, the dimer model, the double-dimer model, and the loop representation of the classical spin O(N) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Betz, V., Taggi, L.: Scaling limit of a self-avoiding walk interacting with random spatial permutations. arXiv:1612.07234 (2017)

  2. Betz, V.: Random permutations of a regular lattice. J. Stat. Phys. 155, 1222–1248 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Betz, V., Schäfer, H., Taggi, L.: Interacting self-avoiding polygons. arXiv:1805.08517 (2018)

  4. Benassi, C., Ueltschi, D.: Loop correlations in random wiremodels. arXiv:1807.06564 (2018) (accepted for publication on Commun. Math. Phys.)

  5. Biskup, M.: Reflection positivity and phase transitions in lattice spin models in methods of contemporary mathematical statistical physics. Lect. Notes Math. 1970, 1–86 (2009)

    Article  MathSciNet  Google Scholar 

  6. Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities Comm. Math. Phys. 83(1), 123–150 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chayes, L., Pryadko, L.P., Schtengel, K.: Intersecting loop models on \({\mathbb{Z}}^d\): rigorous results. Nucl. Phys. B 570(3), 590–614 (2000)

    Article  ADS  Google Scholar 

  8. Duminil-Copin, H., Peled, R., Samotij, W., Spinka, Y.: Exponential decay of loop lengths in the loop \(O(n)\) model with large \(n\). Commun. Math. Phys. 349(3), 777–817 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Duminil-Copin, H., Peled, R., Glazman, A., Spinka, Y.: Macroscopic loops in the loop O(n) model at Nienhuis’ critical point. arXiv:1707.09335 (2018)

  10. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. Estelle, B., Pavel, B.: Exact solution of the classical dimer model on a triangular lattice: Monomer–Monomer correlations. Commun. Math. Phys. 356(2), 397–425 (2017)

    Article  MathSciNet  Google Scholar 

  12. Feynman, R.: Atomic theory of the \(\lambda \) transition in Helium. Phys. Rev. 91, 1291–1301 (1953)

    Article  ADS  Google Scholar 

  13. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316882603. ISBN: 978-1-107-18482-4

    Book  MATH  Google Scholar 

  15. Ginibre, J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16(4), 310–328 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  16. Glazman, A., Manolescu, I.: Uniform Lipschitz functions on the triangular lattice have logarithmic variations. arXiv:1810.05592 (2018)

  17. Glazman, A., Manolescu, I.: Exponential decay in the loop O(n) model: \(n>1\), \(x < \sqrt{1/ 3} + \epsilon (n)\). arXiv:1810.11302 (2018)

  18. Hegerfeldt, G.C.: Correlation inequalities for ising ferromagnets with symmetries. Commun. Math. Phys. 57, 259–266 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lebowitz, J.L.: GHS and other inequalities. Commun. Math. Phys. 35, 87 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kasteleyn, P.W.: The statistics of dimers on a lattice. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  Google Scholar 

  21. Griffiths, R.B.: Correlations in Ising ferromagnets. J. Math. Phys. 8, 478 (1967)

    Article  ADS  Google Scholar 

  22. Kenyon, C., Randall, D., Sinclair, A.: Approximating the number of Monomer–Dimer coverings of a lattice. J. Stat. Phys. 83, 637–659 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kenyon, R.: Conformal invariance of loops in the double-dimer model. Commun. Math. Phys. 326(2), 477–497 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kenyon, R.: An introduction to the dimer model, Lecture notes from a minicourse given at the ICTP in (May 2002). arXiv:math/0310326

  25. Kenyon, R., Sheffield, S.: Dimers, tilings and trees. J. Combin. Theory Ser. B 92(2), 295–317 (2004)

    Article  MathSciNet  Google Scholar 

  26. Messager, A., Miracle-Sole, S.: Correlation functions and boundary conditions in the Ising ferromagnet. J. Stat. Phys. 17(4), 245–262 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  27. Peled, R., Spinka, Y.: Lectures on the spin and loop O(n) models. arXiv:1708.00058 (2017)

  28. Peierls, R.E.: On Ising’s ferromagnet model. Proc. Camb. Philos. Soc. 32, 477–481 (1936)

    Article  ADS  Google Scholar 

  29. Madras, N., Slade, G.: The Self-Avoiding Walk. Modern Birkäuser Classics. Springer, Berlin (1996)

    Book  Google Scholar 

  30. Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys. 7, 510–525 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  31. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag. 6(68), 1061–1063 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  32. Taggi, L.: Shifted critical threshold in the loop O(n) model at arbitrarily small n. Electr. Commun. Probab. 23(96), 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Ueltschi, D.: Relation between Feynman cycles and off-diagonal long-range order. Phys. Rev. Lett. 97, 170601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Benjamin Lees acknowledges support from the Alexander von Humboldt foundation. Lorenzo Taggi acknowledges support from the DFG German Research Foundation BE 5267/1 and from the EPSRC Early Career Fellowship EP/N004566/1. The authors thank the two anonymous referees for carefully reading the paper and their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Taggi.

Additional information

Communicated by H. Duminil-Copin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Proposition 2.3

A Proof of Proposition 2.3

Proof

For any \(A \subset \mathcal {V}_x\), define,

$$\begin{aligned} Z_{N, \beta }^{spin}(A) = \Big ( \, \prod _{x \in \mathcal {V}} \int _{\mathbb {S}^{N-1}} d \varphi _x \, \Big ) \, \big ( \, \prod _{x \in A} \varphi ^1_x \, \big ) \, e^{- \beta H_{N}(\varphi )}. \end{aligned}$$
(A.1)

We will prove that, for any \(N \in \mathbb {N}_{>0}\), \(A \subset \mathcal {V}\), \(\beta \ge 0\), under the choice of the weight function U as in Proposition 2.3, we have that,

$$\begin{aligned} Z_{N, \beta }^{spin}(A) = Z_{N, \beta , U}(A). \end{aligned}$$
(A.2)

Thus, by the definition of point-to-point function, Definition 2.2, we will deduce Proposition 2.3. The starting point of the expansion is the following identity, proved in [7, Appendix A], which holds for any \(N \in \mathbb {N}_{>0}\) and \(n_1, n_2, \ldots n_N \in \mathbb {N}\),

$$\begin{aligned} \int _{\mathbb {S}^{N-1}} (\varphi ^{1})^{n_{1}} \ldots (\varphi ^{N})^{n_{N}} d \varphi = {\left\{ \begin{array}{ll} 0 &{}\quad { \textit{if } } n_{i} \in 2 \mathbb {N} + 1 { \textit{for some} } i \in \{1, \ldots N \},\\ \frac{\Gamma (\frac{N}{2}) \prod _{i=1}^{N} (n_{i} - 1)!! }{ 2^{\frac{n}{2}} \Gamma \big ((n+N)/2 \big )} &{} \quad { \textit{otherwise}}, \end{array}\right. }\nonumber \\ \end{aligned}$$
(A.3)

where \(d \varphi \) denotes the normalised uniform measure on \(\mathbb {S}^{N-1}\), \(n= n_1 + \cdots +n_N\), and \((n_i-1)!!\) is the double factorial, i.e. the number of ways to pair \(n_i\) objects (hence \((-1)!!=1\)). Below, we will omit all sub-scripts to lighten the notation. To begin, we re-write the exponential as follows,

$$\begin{aligned} \exp \Big \{ \beta \sum \limits _{\{x,y\} \in \mathcal {E}} \varphi _x \cdot \varphi _y \Big \} \, = \, \prod _{ \{x,y\} \in \mathcal {E}} \, \, \prod _{i=1}^{N} \, e^{ \beta \varphi _x^{i} \varphi _x^{i}}. \end{aligned}$$
(A.4)

For any \(A \subset \mathcal {V}\), define

$$\begin{aligned}&\mathcal {M}_{\mathcal {G}} (A) : = \{ m \in \mathcal {M}_{\mathcal {G}} \, \, : \, \, \forall x \in A, \sum _{e \in \mathcal {E} : x \in e} m_e \, \, \in 2 \mathbb {N}+1 \, \, \text{ and } \\&\quad \forall z \in \mathcal {V} {\setminus } A, \sum _{e \in \mathcal {E} : z \in e} m_e \, \, \in 2 \mathbb {N} \}. \end{aligned}$$

Now we expand as a Taylor series and use (A.3) to restrict the sum to the terms which are not necessarily zero, obtaining

$$\begin{aligned} Z^{spin}(A)= & {} \sum \limits _{m^{1} \in \mathcal {M}_\mathcal {G}(A)} \, \sum \limits _{m^{2} \in \mathcal {M}_\mathcal {G}(\emptyset )} \ldots \sum \limits _{m^{N} \in \mathcal {M}_\mathcal {G}(\emptyset )} \, \Big ( \prod _{e \in \mathcal {E}} \frac{ \beta ^{m_e^{1}+\dots +m_e^{N}}}{m_e^{1}! \ldots m_e^{N}!} \Big ) \nonumber \\&\Big ( \, \prod _{x \in \mathcal {V}} \int _{\mathbb {S}^{N-1}} d \varphi _x \, \Big ) \prod _{x \in \mathcal {V} {\setminus } A} \Big ( \, (\varphi _x^{1})^{q_x^{1}} \ldots (\varphi _x^{N})^{q_x^{N}} \Big )\nonumber \\&\prod _{x \in A } \Big ( \, (\varphi _x^{1})^{q_x^{1}+1} (\varphi _x^{2})^{q_x^{2}} \ldots (\varphi _x^{N})^{q_x^{N}} \Big ) \end{aligned}$$
(A.5)

where we defined for any \(x \in \mathcal {V}\), \( q^i_x(m) : = \sum _{e \in \mathcal {E} : x \in e} m^i_e. \) We now rewrite the expression by first summing over all \(m \in \mathcal {M}_{{{\mathcal {G}}}}(A)\) and \((m^1\), \(m^2\), \(\ldots \), \(m^N)\), such that, \(m^1\in {{\mathcal {M}}}_{{\mathcal {G}}}(A)\), \(m^i\in {{\mathcal {M}}}_{{{\mathcal {G}}}}(\emptyset )\), when \(i\in \{2,\dots ,N\}\), \(m = \sum _{i=1}^{N} m^i\), and \(q_x = \sum _{i=1}^{N} q_x^i\), obtaining,

$$\begin{aligned} Z^{spin}(A)= & {} \sum \limits _{m \in \mathcal {M}_{\mathcal {G}}(A)} \, \prod _{e \in \mathcal {E}} \Big ( \frac{\beta ^{m_e}}{m_e!} \Big ) \sum \limits _{ \begin{array}{c} m^1 \in \mathcal {M}_\mathcal {G}(A) \\ m^{i} \in \mathcal {M}_\mathcal {G}(\emptyset ), i \ge 2 : \\ \sum _{i=1}^{N} m^i = m \end{array}} \prod _{e \in \mathcal {E}} \Big (\frac{m_e!}{m_e^1! \ldots m_e^N!} \, \Big ) \nonumber \\&\prod _{x \in \mathcal {V} {\setminus } A } \Bigg ( \frac{\Gamma (\frac{N}{2})}{2^{\frac{q_x}{2}} \Gamma ( (q_x+N)/2) } \prod _{i=1}^{N} ( q^i_x - 1) !! \Bigg )\nonumber \\&\prod _{x \in A } \Bigg ( \frac{\Gamma (\frac{N}{2})}{2^{\frac{q_x+1}{2}} \Gamma ( (q_x+1 + N)/2) } q_x^1!! \, \, \prod _{i=2}^{N} ( q^i_x - 1) !! \Bigg ) . \end{aligned}$$
(A.6)

Above, the product right after the second sum can be interpreted as the number of colour assignments to the \(m_e\) links which are parallel to the edge e such that precisely \(m_e^i\) links have colour i, for each \(i=1, \ldots , N\). Moreover, note that, if \(q^i_x\) is an odd integer, then \( q^i_x !! \) is the number of ways \(q^i_x\) links which are incident to x can be “paired" in such a way that only one link is unpaired and the remaining \((q^i_x-1)\) links are paired, while, if \(q^i_x\) is an even integer, then \((q^i_x-1)!!\) is the number of ways such \(q^i_x\) links can be paired. Thus, in the next step, we replace the sum over \((m^i)_{i=1, \ldots , N}\) by the sum over N possible colours for each link and the double factorial terms by the sum over all possible pairings of the links which are incident to each vertex. Recalling the definition of \(n^i_x(m,c, \pi )\), which was given in (2.2), and putting \(n_x(m,c, \pi ) = \sum _{i=1}^{N} n^i_x(m, c, \pi )\), we obtain that,

$$\begin{aligned} Z^{spin}(A)= & {} \sum \limits _{ m \in \mathcal {M}_{\mathcal {G}}(A)} \, \prod _{e \in \mathcal {E}} \bigg ( \frac{\beta ^{m_e}}{m_e!} \bigg ) \nonumber \\&\sum _{c\in {{\mathcal {C}}}_{{{\mathcal {G}}}}(m)}\sum \limits _{\pi \in \mathcal {P}_{\mathcal {G}}(m,c) } \prod _{x \in \mathcal {V} {\setminus } A } \Bigg ( \frac{ \Gamma (N/2)}{2^{n_x(m,c,\pi )}\Gamma ( n_x(m, c, \pi ) + N/2) } \Bigg ) \nonumber \\&\prod _{x \in A } \Bigg ( \frac{ \Gamma (N/2)}{ 2^{n_x(m,c, \pi )}\Gamma (n_x(m,c, \pi ) + N/2) } \Bigg ) . \end{aligned}$$
(A.7)

In the previous expression we also used the fact that, if for a realisation \((m, c, \pi ) \in \mathcal {W}_{\mathcal {G}}(A)\), \(q_x\) links touch the vertex x, where \(x \in A\), this means that \(q_x + 1 = 2 n_x(m,c, \pi )\). Similarly, if for a realisation \((m, c, \pi ) \in \mathcal {W}_{\mathcal {G}}(A)\), \(q_x\) links touch the vertex x, where \(x \not \in A\), then \(q_x = 2 n_x(m, c, \pi )\). Plugging in the definition of the weight function \(U_x\) (recall Definition 2.1 and the assumption of Proposition 2.3), the proof of Proposition 2.3 is concluded. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lees, B., Taggi, L. Site Monotonicity and Uniform Positivity for Interacting Random Walks and the Spin O(N) Model with Arbitrary N. Commun. Math. Phys. 376, 487–520 (2020). https://doi.org/10.1007/s00220-019-03647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03647-6

Navigation