×

Lectures on the spin and loop \(O(n)\) models. (English) Zbl 1446.82019

Sidoravicius, Vladas (ed.), Sojourns in probability theory and statistical physics. I. Spin glasses and statistical mechanics, a festschrift for Charles M. Newman. Singapore: Springer; Shanghai: NYU Shanghai. Springer Proc. Math. Stat. 298, 246-320 (2019).
Summary: The classical spin \(O(n)\) model is a model on a d-dimensional lattice in which a vector on the \((n-1)\)-dimensional sphere is assigned to every lattice site and the vectors at adjacent sites interact ferromagnetically via their inner product. Special cases include the Ising model \((n=1)\), the XY model \((n=2)\) and the Heisenberg model \((n=3)\). We discuss questions of long-range order and decay of correlations in the spin \(O(n)\) model for different combinations of the lattice dimension d and the number of spin components \(n\).
The loop \(O(n)\) model is a model for a random configuration of disjoint loops. We discuss its properties on the hexagonal lattice. The model is parameterized by a loop weight \(n\geq 0\) and an edge weight \(x\geq 0\). Special cases include self-avoiding walk \((n=0)\), the Ising model \((n=1)\), critical percolation \((n=x=1)\), dimer model (\(n=1\), \(x=\infty\)), proper 4-coloring (\(n=2\), \(x=\infty\)), integer-valued \((n=2)\) and tree-valued (integer \(n \geq 3)\) Lipschitz functions and the hard hexagon model \((n=\infty)\). The object of study in the model is the typical structure of loops. We review the connection of the model with the spin \(O(n)\) model and discuss its conjectured phase diagram, emphasizing the many open problems remaining.
For the entire collection see [Zbl 1429.60003].

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82D40 Statistical mechanics of magnetic materials
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B43 Percolation
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
81R40 Symmetry breaking in quantum theory
82B30 Statistical thermodynamics
60J67 Stochastic (Schramm-)Loewner evolution (SLE)

References:

[1] Aizenman, M.: Absence of an intermediate phase for a general class of one-component ferromagnetic models. Phys. Rev. Lett. 54(8), 839 (1985) · doi:10.1103/PhysRevLett.54.839
[2] Aizenman, M.: Rigorous studies of critical behavior. II. In: Statistical Physics and Dynamical Systems (Köszeg, 1984). Progress in Physics, vol. 10, pp. 453-481. Birkhäuser, Boston (1985) · Zbl 0662.60114
[3] Aizenman, M.: On the slow decay of \({\rm O}(2)\) correlations in the absence of topological excitations: remark on the Patrascioiu-Seiler model. J. Statist. Phys. 77(1-2), 351-359 (1994) · Zbl 0838.60096 · doi:10.1007/BF02186846
[4] Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Statist. Phys. 47(3-4), 343-374 (1987) · doi:10.1007/BF01007515
[5] Aizenman, M., Bricmont, J., Lebowitz, J.: Percolation of the minority spins in high-dimensional Ising models. J. Stat. Phys. 49(3), 859-865 (1987) · Zbl 0960.82503 · doi:10.1007/BF01009363
[6] Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334(2), 719-742 (2015) · Zbl 1315.82004 · doi:10.1007/s00220-014-2093-y
[7] Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex sos model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys. 35(3), 193-266 (1984) · Zbl 0589.60093 · doi:10.1007/BF01014383
[8] Balaban, T.: A low temperature expansion for classical N-vector models. I. A renormalization group flow. Commun. Math. Phys. 167(1), 103-154 (1995) · Zbl 0811.60100 · doi:10.1007/BF02099355
[9] Balister, P.N., Bollobás, B.: Counting regions with bounded surface area. Commun. Math. Phys. 273(2), 305-315 (2007) · Zbl 1135.82004 · doi:10.1007/s00220-007-0231-5
[10] Bauerschmidt, R.: Ferromagnetic spin systems (2016). Lecture notes: http://www.statslab.cam.ac.uk/ rb812/doc/spin.pdf
[11] Baxter, R.: Colorings of a hexagonal lattice. J. Math. Phys. 11(3), 784-789 (1970) · doi:10.1063/1.1665210
[12] Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A 13(3), L61-L70 (1980) · doi:10.1088/0305-4470/13/3/007
[13] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989). Reprint of the 1982 original · Zbl 0723.60120
[14] Beffara, V., Gayet, D.: Percolation without FKG. Preprint arXiv:1710.10644 (2017)
[15] Benassi, C., Lees, B., Ueltschi, D.: Correlation inequalities for classical and quantum XY models. Preprint arXiv:1611.06019 (2016) · Zbl 1359.82002
[16] Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3). arXiv preprint arXiv:1604.06975 (2016) · Zbl 1467.60061
[17] Berezinskii, V.: Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. J. Exp. Theor. Phys. 34, 610 (1972)
[18] Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86(6), 821 (1952) · Zbl 0047.45703 · doi:10.1103/PhysRev.86.821
[19] Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Methods of Contemporary Mathematical Statistical Physics, pp. 1-86 (2009) · Zbl 1180.82041
[20] Bollobás, B.: The Art of Mathematics. Cambridge University Press, New York (2006) · Zbl 1238.00002 · doi:10.1017/CBO9780511816574
[21] Bonato, C., Perez, J.F., Klein, A.: The Mermin-Wagner phenomenon and cluster properties of one-and two-dimensional systems. J. Stat. Phys. 29(2), 159-175 (1982) · doi:10.1007/BF01020779
[22] Bricmont, J., Fontaine, J., Landau, L.: On the uniqueness of the equilibrium state for plane rotators. Commun. Math. Phys. 56(3), 281-296 (1977) · doi:10.1007/BF01614213
[23] Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83(1), 123-150 (1982) · doi:10.1007/BF01947075
[24] Camia, F., Newman, C.: Critical percolation exploration path and \({\rm SLE}_6\): a proof of convergence. Probab. Theory Relat. Fields 139(3-4), 473-519 (2007) · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[25] Camia, F., Newman, C.M.: Continuum nonsimple loops and 2D critical percolation. J. Stat. Phys. 116(1), 157-173 (2004) · Zbl 1142.82332 · doi:10.1023/B:JOSS.0000037221.31328.75
[26] Camia, F., Newman, C.M.: The full scaling limit of two-dimensional critical percolation. Preprint arXiv:math/0504036 (2005) · Zbl 1117.60086
[27] Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1-38 (2006) · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.