×

On the quasi-normal modes of a Schwarzschild white hole for the lower angular momentum and perturbation by non-local fractional operators. (English) Zbl 1442.83020

Summary: We investigate conditions for the quasi-normal modes of a Schwarzschild white hole for lower angular momentum. In determining these normal modes, we use numerical methods to solve the solution of the linearized Einstein vacuum equations in null cone coordinates. The same model is generalized to non-local fractional operator theory where the model is solved numerically thanks to a method proposed by Toufik and Atangana. In fact, approaching this kind of problem analytically seems to be an impossible task as comprehensively articulated in the literature. We show existence of quasi-normal modes of a Schwarzschild white hole for lower angular momentum \(l=2\). Moreover, the non-local fractional operator appears to be a perturbator factor for the system as shown by numerical simulations that compare the types of dynamics in the system.

MSC:

83C57 Black holes
35C10 Series solutions to PDEs
35R11 Fractional partial differential equations
65L70 Error bounds for numerical methods for ordinary differential equations

Software:

ma2dfc
Full Text: DOI

References:

[1] Ahmed, M., Gen Relativ Gravit, 20, 97 (1988)
[2] Baber, W. G.; Hassé, H. R., Proc Cambridge Philos Soc, 25, 564 (1935)
[3] Bishop, N. T., Class Quantun Grav, 22, 2393 (2005)
[4] Bishop, N. T.; Gómez, R.; Lehner, L.; Maharaj, M.; Winicour, J., Phys Rev D, 56, 6298 (1997)
[5] Bishop, N. T.; Kubeka, A. S., Phys Rev D, 80, 064011 (2009)
[6] Bondi, H.; van der, B. M.J. G.; Metzner, A. W.K., Proc R Soc Lond, A269, 21 (1962) · Zbl 0106.41903
[7] Chandrasekhar, S.; Detweiler, S., Proc R Soc Lond A, 344, 441 (1975)
[8] Chandrasekhar, S., The mathematical theory of black holes, 141 (1983), Oxford University Press: Oxford University Press New York · Zbl 0511.53076
[9] Dudley, A. L.; Finley, J. D., J Math Phys, 20, 311 (1979)
[10] Edelstein, L. A.; Vishveshwara, C. V., Phys Rev, 1, 3514 (1969)
[11] Chu, L. J.; Stratton, J. A., J Math Phys, 20, 3 (1941) · Zbl 0026.21403
[12] Hylleraas, E., Z Phys, 71, 739 (1931) · JFM 57.1582.04
[13] Jaffé, G., Z Phys, 87, 535 (1934) · JFM 60.0781.01
[14] Leaver, E. W., Pro R Soc Lond A, 402, 285 (1985)
[15] Leaver, E. W., Phys Rev D, 41, 2986 (1990)
[16] Leaver, E. W., Phys Rev D, 43, 1434 (1991)
[17] Olver, F. W.J., Asymptotics and special functions pages 229-235 (1974), Academic Press: Academic Press New York · Zbl 0303.41035
[18] Sachs, R. K., Phys Rev Lett, 150, 66 (1963)
[19] Kincaid, D.; Cheney, W., Numerical analysis (1991), Brooks/Cole Publishing Company: Brooks/Cole Publishing Company Pacific Grove, California 93950 · Zbl 0745.65001
[20] Goufo, E. F.D., Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: basic theory and applications, Chaos, 26, 8 (2016) · Zbl 1378.34011
[21] Goufo, E. F.D.; Atangana, A., Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, Eur Phys J Plus, 131, 8 (2016)
[22] Toufik, M.; ATANGANA, A., New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur Phys J Plus, 132, 444 (2017)
[23] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular kernel, Therm Sci, 20, 2, 763-769 (2016)
[24] Atangana, A.; Gómez-Aguilar, J., Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur Phys J Plus, 133, 1-22 (2018)
[25] Atangana, A., Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties, Physica A, 505, 688-706 (2018) · Zbl 1514.34009
[26] Goufo, E. F.D.; Atangana, A., Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, Eur Phys J Plus, 131, 8, 269 (2016)
[27] Goufo, E. F.D., Solvability of chaotic fractional systems with 3d four-scroll attractors, Chaos Solitons Fractals, 104, 443-451 (2017) · Zbl 1380.34110
[28] Goufo, E. F.D., An application of the caputo-fabrizio operator to replicator-mutator dynamics: bifurcation, chaotic limit cycles and control, Eur Phys J Plus, 133, 80 (2018)
[29] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog Fract Differ Appl, 1, 2, 1-13 (2015)
[30] Goufo, E. F.D.; Nieto, J. J., Attractors for fractional differential problems of transition to turbulent flows, J Comput Appl Math (2017)
[31] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl Math Comput, 212, 2, 435-445 (2009) · Zbl 1171.65101
[32] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J Comput Appl Math, 172, 1, 65-77 (2004) · Zbl 1126.76346
[33] Saad, K. M., Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system, Eur Phys J Plus, 133, 3, 94 (2018)
[34] Gomez, F.; Saad, K. M., Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense, Rev Mexicana Física, 64, 5, 539-547 (2018)
[35] Saad, K. M.; Gómez-Aguilar, J. F., Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A, 509, 703-716 (2018) · Zbl 1514.35469
[36] Atangana, A.; Gómez-Aguilar, J. F., Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and mittag-leffler laws, Chaos Solitons Fractals, 102, 285-294 (2017) · Zbl 1374.34296
[37] Yépez-Martinez, H.; Gómez-Aguilar, J. F., A new modified definition of caputo-fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM), J Comput Appl Math, 346, 247-260 (2019) · Zbl 1402.26005
[38] Atangana, A.; Gómez-Aguilar, J. F., Fractional derivatives with no-index law property: application to chaos and statistics, Chaos Solitons Fractals, 114, 516-535 (2018) · Zbl 1415.34010
[39] Saad, K. M.; Atangana, A.; Baleanu, D., New fractional derivatives with non-singular kernel applied to the burgers equation, Chaos, 28, 6, 063109 (2018) · Zbl 1394.35565
[40] Lambert, J. D., Numerical methods for ordinary differential systems (1991), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0745.65049
[41] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J Comput Phys, 213, 1, 205-213 (2006) · Zbl 1089.65089
[42] Liu, Y.; Fang, Z.; Li, H.; He, S., A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl Math Comput, 243, 703-717 (2014) · Zbl 1336.65166
[43] Zhang, Y., A finite difference method for fractional partial differential equation, Appl Math Comput, 215, 2, 524-529 (2009) · Zbl 1177.65198
[44] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J Numer Anal, 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[45] Chen, C. M.; Liu, F.; Turner, I.; Anh, V., A fourier method for the fractional diffusion equation describing sub-diffusion, J Comput Phys, 227, 2, 886-897 (2007) · Zbl 1165.65053
[46] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J Numer Anal, 42, 5, 1862-1874 (2005) · Zbl 1119.65379
[47] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M.V., Matrix approach to discrete fractional calculus II: partial fractional differential equations, J Comput Phys, 228, 8, 3137-3153 (2009) · Zbl 1160.65308
[48] Hanert, E., On the numerical solution of space-time fractional diffusion models, Comput Fluids, 46, 1, 33-39 (2011) · Zbl 1305.65212
[49] Goufo, E. F.D.; Kubeka, A., Approximation result for non-autonomous and non-local rock fracture models, Jpn J Ind Appl Math, 35, 1, 217-233 (2018) · Zbl 1489.86010
[50] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical proceedings of the cambridge philosophical society, 43, 50-67 (1947), Cambridge Univ Press · Zbl 0029.05901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.