×

Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. (English) Zbl 1374.34296

Summary: The nature is very complex to model with mathematical equations. Some physical problems found in nature could follow the power law; other could follow the Mittag-Leffler law and other the exponential decay law. On the other hand one could observe in nature a physical problem that combines both, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator exponential-Mittag-Leffler kernel with two fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed.

MSC:

34K23 Complex (chaotic) behavior of solutions to functional-differential equations
65L04 Numerical methods for stiff equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI

References:

[1] Sousa, E.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl Numer Math, 90, 22-37 (2015) · Zbl 1326.65111
[2] Al-Refai, M.; Luchko, Y., Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl Math Comput, 257, 40-51 (2015) · Zbl 1338.35457
[3] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., Computational solutions of distributed order reaction-diffusion systems associated with Riemann-Louville derivatives, Axioms, 4, 2, 120-133 (2015) · Zbl 1318.26018
[4] Baskonus, H. M.; Mekkaoui, T.; Hammouch, Z.; Bulut, H., Active control of a chaotic fractional order economic system, Entropy, 17, 8, 5771-5783 (2015)
[5] Gencoglu, M. T.; Baskonus, H. M.; Bulut, H., Numerical simulations to the nonlinear model of interpersonal relationships with time fractional derivative, AIP Conference Proceedings, 1798, 020103 (2017)
[6] Ahmad, B.; Batarfi, H.; Nieto, J. J.; Otero-Zarraquiños, O.; Shammakh, W., Projectile motion via Riemann-Liouville calculus, Adv Difference Equ, 2015, 1, 1-14 (2015) · Zbl 1346.70003
[7] Lazopoulos, K. A.; Lazopoulos, A. K., Fractional derivatives and strain gradient elasticity, Acta Mech, 227, 3, 823-835 (2016) · Zbl 1381.74019
[8] Bakkyaraj, T.; Sahadevan, R., Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative, Nonlinear Dyn, 80, 1-2, 447-455 (2015) · Zbl 1345.34003
[9] Caputo, M., The memory damped seismograph, Bollettino di Geofisica Teorica ed Applicata, 54, 3, 217-228 (2013)
[10] Gómez-Aguilar, J. F.; Razo-Hernández, R.; Granados-Lieberman, D., A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response, Rev Mex Fís, 60, 32-38 (2014)
[11] Gómez-Aguilar, J. F.; Miranda-Hernández, M.; López-López, M.-G.; Alvarado- Martínez, V.-M.; Baleanu, D., Modeling and simulation of the fractional space-time diffusion equation, Commun Nonlinear Sci Numer Simul, 30, 1-3, 115-127 (2016) · Zbl 1489.78003
[12] Duan, B.; Zheng, Z.; Cao, W., Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial-value problems, J Comput Phys, 319, 108-128 (2016) · Zbl 1349.65249
[13] Ito, K.; Jin, B.; Takeuchi, T., On the sectorial property of the Caputo derivative operator, Appl Math Lett, 47, 43-46 (2015) · Zbl 1371.34124
[14] Atangana, A.; Alkahtani, B. S.T, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17, 6, 4439-4453 (2015) · Zbl 1338.35458
[15] Caputo, M.; Fabricio, M., A new definition of fractional derivative without singular kernel, Progr Fract Differ Appl, 1, 2, 73-85 (2015)
[16] Hashemi, M. S.; Baleanu, D., Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line, J Comput Phys, 316, 10-20 (2016) · Zbl 1349.65396
[17] Alqahtani, R. T., Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection, J Nonlinear Sci Appl, 9, 1991-1999 (2016) · Zbl 1367.47057
[18] Caputo, M.; Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progr Fract Differ Appl, 2, 2, 1-11 (2016)
[19] Gómez-Aguilar, J.-F.; Torres, L.; Yépez-Martínez, H.; Baleanu, D.; Reyes, J. M.; Sosa, I. O., Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Adv Difference Equ, 2016, 1, 1-13 (2016) · Zbl 1419.35208
[20] Atangana, A.; Alkahtani, B. S.T., New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arabian J Geosci, 9, 1, 1-6 (2016) · Zbl 1360.35164
[21] Atangana, A.; Alkahtani, B. S.T., Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv Mech Eng, 7, 6, 1-6 (2015)
[22] Gómez-Aguilar, J.-F.; Escalante-Martínez, J.-E.; Calderón-Ramón, C.; Morales-Mendoza, L.-J.; Benavidez-Cruz, M.; Gonzalez-Lee, M., Equivalent circuits applied in electrochemical impedance spectroscopy and fractional derivatives with and without singular kernel, Adv Math Phys, 2016, 1, 1-25 (2016) · Zbl 1348.78021
[23] Alkahtani, B. S.T.; Atangana, A., Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos, Solitons Fractals, 89, 539-546 (2016) · Zbl 1360.35164
[24] YANG, X.-J.; Srivastava, H. M.; Machado, J. T., A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Therm Sci, 20, 2, 753-756 (2016)
[25] Caputo, M.; Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progr Fract Differ Appl, 2, 1-11 (2016)
[26] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm Sci, 20, 2, 763-769 (2016)
[27] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[28] Coronel-Escamilla, A.; Gómez-Aguilar, J.-F.; López-López, M.-G.; Alvarado-Martínez, V.-M.; Guerrero-Ramírez, G.-V., Triple pendulum model involving fractional derivatives with different kernels, Chaos, Solitons Fractals, 91, 248-261 (2016) · Zbl 1372.70049
[29] Gómez-Aguilar, J.-F., Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel, Chaos, Solitons Fractals, 95, 179-186 (2017) · Zbl 1373.34116
[30] Algahtani, O. J.J., Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons Fractals, 89, 552-559 (2016) · Zbl 1360.35094
[31] Alkahtani, B. S.T., Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons Fractals, 89, 547-551 (2016) · Zbl 1360.34160
[32] Ozarslan, M. A.; Ozergin, E., Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math Comput Model, 52, 1825-1833 (2010) · Zbl 1205.33021
[33] Ozergin, E.; Ozarslan, M. A.; Altin, A., Extension of gamma, beta and hypergeometric functions, J Comput Appl Math, 235, 4601-4610 (2011) · Zbl 1218.33002
[34] Kymaz, I. O.; Cetinkaya, A.; Agarwal, P., An extension of Caputo fractional derivative operator and its applications, J Nonlinear Sci Appl, 9, 3611-3621 (2016) · Zbl 1345.26014
[35] Kilbas, A. A.; Saigo, M.; Saxena, R. K., Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J Integral Equ Appl, 14, 4, 377-396 (2002) · Zbl 1041.45011
[36] Hilfer, R., Fractional calculus and regular variation in thermodynamics, Applications of Fractional Calculus in Physics, 429 (2000) · Zbl 1046.82009
[37] Hilfer, R., Threefold introduction to fractional derivatives, 17-73 (2008)
[38] Garra, R.; Gorenflo, R.; Polito, R.; Tomovski, Ž., Hilfer-Prabhakar derivatives and some applications, Appl Math Comput, 242, 576-589 (2014) · Zbl 1334.26008
[39] Sandev, T.; Metzler, R.; Tomovski, Ž., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J Phys A: Math Theor, 44, 25, 255203 (2011) · Zbl 1301.82042
[40] Atangana, A., Derivative with two fractional orders: a new avenue of investigation toward revolution in fractional calculus, Eur Phys J Plus, 131, 10, 373 (2016)
[41] Chua, L. O.; Itoh, M.; Kocarev, L.; Eckert, M., Chaos synchronization in Chua’s circuit, J Circuits, Syst Comput, 3, 01, 93-108 (1993)
[42] Rössler, O. E., An equation for continuous chaos, Phys Lett A, 57, 5, 397-398 (1976) · Zbl 1371.37062
[43] Metzler, R.; Nonnenmacher, T. F., Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem Phys, 284, 1, 67-90 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.