×

A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. (English) Zbl 1440.74324

Summary: This paper presents a new isogeometric topology optimization (TO) method based on moving morphable components (MMC), where the R-functions are used to represent the topology description functions (TDF) to overcome the \(\mathit{C}^1\) discontinuity problem of the overlapping regions of components. Three new ersatz material models based on uniform, Gauss and Greville abscissae collocation schemes are used to represent both the Young’s modulus of material and the density field based on the Heaviside values of collocation points. Three benchmark examples are tested to evaluate the proposed method, where the collocation schemes are compared as well as the difference between isogeometric analysis (IGA) and finite element method (FEM). The results show that the convergence rate using R-functions has been improved in a range of 17%-60% for different cases in both FEM and IGA frameworks, and the Greville collocation scheme outperforms the other two schemes in the MMC-based TO.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

Software:

top.m; top88.m; ISOGAT; Matlab
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[2] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[3] Zhou, M.; Rozvany, G. I.N., The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 1-3, 309-336 (1991)
[4] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[5] Mei, Y.; Wang, X., A level set method for structural topology optimization and its applications, Comput. Methods Appl. Mech. Engrg., 35, 7, 415-441 (2004) · Zbl 1067.90153
[6] Xia, Q.; Wang, M. Y.; Shi, T., A level set method for shape and topology optimization of both structure and support of continuum structures, Comput. Methods Appl. Mech. Engrg., 272, 11, 340-353 (2014) · Zbl 1296.74084
[7] Xia, Q.; Wang, M. Y.; Shi, T., Topology optimization with pressure load through a level set method, Comput. Methods Appl. Mech. Engrg., 283, 177-195 (2015) · Zbl 1423.74774
[8] Liu, T.; Li, B.; Wang, S.; Gao, L., Eigenvalue topology optimization of structures using a parameterized level set method, Struct. Multidiscip. Optim., 50, 4, 573-591 (2014)
[9] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 29, 2059-2071 (2010) · Zbl 1231.74352
[10] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 5, 885-896 (1993)
[11] Maute, K.; Allen, M., Conceptual design of aeroelastic structures by topology optimization, Struct. Multidiscip. Optim., 27, 1-2, 27-42 (2004)
[12] Stanford, B.; Ifju, P., Aeroelastic topology optimization of membrane structures for micro air vehicles, Struct. Multidiscip. Optim., 38, 3, 301-316 (2009)
[13] Zhu, J.-H.; Zhang, W.-H.; Xia, L., Topology Optimization in Aircraft and Aerospace Structures Design, Arch. Comput. Methods Eng., 23, 4, 595-622 (2016) · Zbl 1360.74128
[14] Langelaar, M., Topology optimization of 3D self-supporting structures for additive manufacturing, Addit. Manuf., 12, 60-70 (2016)
[15] Zegard, T.; Paulino, G. H., Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53, 1, 175-192 (2016)
[16] Guo, X.; Zhou, J.; Zhang, W.; Du, Z.; Liu, C.; Liu, Y., Self-supporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Engrg., 323, 27-63 (2017) · Zbl 1439.74273
[17] Li, Y. F.; Huang, X.; Meng, F.; Zhou, S., Evolutionary topological design for phononic band gap crystals, Struct. Multidiscip. Optim., 54, 3, 1-23 (2016)
[18] Li, Y. F.; Huang, X.; Zhou, S., Topological Design of Cellular Phononic Band Gap Crystals, Materials, 9, 3, 186-208 (2016)
[19] Aage, N.; Andreassen, E.; Lazarov, B. S.; Sigmund, O., Giga-voxel computational morphogenesis for structural design, Nature, 550, 7674, 84-86 (2017)
[20] Guo, X., Doing topology optimization explicitly and geometrically—a new moving morphable components based framework, Frontiers Appl. Mech., 81, 8, Article 081009 pp. (2014)
[21] Zhang, W.; Li, D.; Zhang, J.; Guo, X., Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Engrg., 311, 327-355 (2016) · Zbl 1439.74312
[22] Hoang, V. N.; Jang, G. W., Topology optimization using moving morphable bars for versatile thickness control, Comput. Methods Appl. Mech. Engrg., 317, 153-173 (2017) · Zbl 1439.74274
[23] Zhang, W.; Zhou, J.; Zhu, Y.; Guo, X., Structural complexity control in topology optimization via moving morphable component (MMC) approach, Struct. Multidiscip. Optim., 56, 3, 535-552 (2017)
[24] Zhang, W.; Yang, W.; Zhou, J.; Li, D.; Guo, X., Structural topology optimization through explicit boundary evolution, J. Appl. Mech., 84, 1 (2017)
[25] Zhang, W.; Chen, J.; Zhu, X.; Zhou, J.; Xue, D.; Lei, X.; Guo, X., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 322, 590-614 (2017) · Zbl 1439.74311
[26] Guo, X.; Zhang, W.; Zhang, J.; Yuan, J., Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Engrg., 310, 711-748 (2016) · Zbl 1439.74272
[27] Zhang, W.; Yuan, J.; Zhang, J.; Guo, X., A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53, 6, 1243-1260 (2016)
[28] Hou, W.; Gai, Y.; Zhu, X.; Wang, X.; Zhao, C.; Xu, L.; Jiang, K.; Hu, P., Explicit isogeometric topology optimization using moving morphable components, Comput. Methods Appl. Mech. Engrg., 326, 694-712 (2017) · Zbl 1439.74275
[29] Wang, Y.; Benson, D. J., Isogeometric analysis for parameterized LSM-based structural topology optimization, Comput. Mech., 57, 1, 19-35 (2016) · Zbl 1381.74212
[30] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 1, 68-75 (1998)
[31] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[32] Marussig, B.; Hughes, T. J.R., A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects, Arch. Comput. Methods Eng., 8, 1-69 (2017)
[33] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[34] Zhang, Y.; Wang, W.; Hughes, T. J.R., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249-252, 185-197 (2012) · Zbl 1348.65057
[35] Vuong, A. V.; Giannelli, C.; Jüttler, B.; Simeon, B., A Hierarchical Approach to Adaptive Local Refinement in Isogeometric Analysis, Comput. Methods Appl. Mech. Engrg., 200, 49, 3554-3567 (2012) · Zbl 1239.65013
[36] Wu, Z. J.; Huang, Z. D.; Liu, Q. H.; Zuo, B. Q., A local solution approach for adaptive hierarchical refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 283, 1467-1492 (2014) · Zbl 1425.65187
[37] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[38] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J.R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198, 45-46, 3534-3550 (2009) · Zbl 1229.74096
[39] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5, 276-289 (2010) · Zbl 1227.74107
[40] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[41] Liu, H.; Zhu, X.; Yang, D., Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams, Struct. Eng. Mech., 59, 3, 503-526 (2016)
[42] Wang, X.; Zhu, X.; Hu, P., Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions, Int. J. Mech. Sci., 104, 190-199 (2015)
[43] Luycker, E. D.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M. C., X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[44] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437 (2011)
[45] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA,N Vol. 141, 299-325 (2015), Wiley & Sons, (5)
[46] Wang, Y.; Xu, H.; Pasini, D., Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Engrg., 316, 568-585 (2016) · Zbl 1439.74301
[47] Xia, Z.; Wang, Y.; Wang, Q.; Mei, C., GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis, Struct. Multidiscip. Optim., 56, 2, 1-22 (2017)
[48] Seo, Y. D.; Kim, H. J.; Youn, S. K., Isogeometric topology optimization using trimmed spline surfaces, Comput. Methods Appl. Mech. Engrg., 199, 49-52, 3270-3296 (2010) · Zbl 1225.74068
[49] Dedè, L.; Borden, M. J.; Hughes, T. J.R., Isogeometric Analysis for Topology Optimization with a Phase Field Model, Arch. Comput. Methods Eng., 19, 3, 427-465 (2012) · Zbl 1354.74224
[50] Kumar, A. V.; Parthasarathy, A., Topology optimization using B-spline finite elements, Struct. Multidiscip. Optim., 44, 4, 471-481 (2011) · Zbl 1274.74358
[51] Wang, Y.; Benson, D. J., Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements, Front. Mech. Eng., 11, 4, 1-16 (2016)
[52] Lieu, Q. X.; Lee, J., A multi-resolution approach for multi-material topology optimization based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 323, 272-302 (2017) · Zbl 1439.74283
[53] Fougerolle, Y. D.; Gribok, A.; Foufou, S.; Truchetet, F.; Abidi, M. A., Boolean operations with implicit and parametric representation of primitives using R-functions, IEEE Trans. Vis. Comput. Graphics, 11, 5, 529-539 (2005)
[54] Rvachev, V. L., Theory of R-Functions and Some Applications, Econometrica, 36, 5, 35-38 (1982) · Zbl 0521.65084
[55] Zhang, W.; Song, J.; Zhou, J.; Du, Z.; Zhu, Y.; Sun, Z.; Guo, X., Topology optimization with multiple materials via Moving Morphable Component (MMC) method, Internat. J. Numer. Methods Engrg. (2017)
[56] Liu, T.; Wang, S.; Li, B.; Gao, L., A level-set-based topology and shape optimization method for continuum structure under geometric constraints, Struct. Multidiscip. Optim., 50, 2, 253-273 (2014)
[57] Zhang, W.; Li, D.; Zhou, J.; Du, Z.; Li, B.; Guo, X., A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints, Comput. Methods Appl. Mech. Engrg. (2018) · Zbl 1440.74330
[58] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[59] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer Berlin Heidelberg · Zbl 0868.68106
[60] Boor, C. D., On calculating with B -splines, J. Approx. Theory, 6, 1, 50-62 (1972) · Zbl 0239.41006
[61] Balestrino, A.; Caiti, A.; Crisostomi, E.; Grammatico, S., Stabilizability of linear differential inclusions via R-functions, IFAC Proc. Vol., 43, 14, 1092-1097 (2010)
[62] T.N.E. Greville, Introduction to spline functions, Theory and Applications of Spline Functions, 1969, pp. 1-35. · Zbl 0215.17601
[63] Farin, G., Curves and Surfaces for Cagd (2001), Morgan Kaufmann
[64] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[65] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011) · Zbl 1274.74310
[66] Liu, K.; Tovar, A., An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. Optim., 50, 6, 1175-1196 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.