×

Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem. (English) Zbl 1439.78016

Summary: In this paper, we present an exact integration scheme to compute highly oscillatory integrals that appear in the solution of the two-dimensional Helmholtz problem using the planewave-enriched partition of unity finite element method. In the proposed scheme, such oscillatory integrals are computed by a recursive application of the divergence theorem, eventually expressing the integrals in terms of evaluations of the corresponding integrands at the nodes of the finite element mesh. The number of such function evaluations is independent of the wave number \(k\), which permits the scheme to be used for arbitrary high values of \(k\). We consider finite element meshes with unstructured triangular and structured rectangular elements, and present numerical results for three canonical benchmark Helmholtz problems to demonstrate the accuracy and efficacy of the method.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74J20 Wave scattering in solid mechanics
76Q05 Hydro- and aero-acoustics
76M10 Finite element methods applied to problems in fluid mechanics

Software:

PUMA
Full Text: DOI

References:

[1] Babus˘ka, I.; Ihlenburg, F.; Paik, E. T.; Sauter, S. A., A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128, 3-4, 325-359 (1995) · Zbl 0863.73055
[2] Babus˘ka, I.; Sauter, S. A., Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34, 6, 2392-2423 (1997) · Zbl 0894.65050
[3] Ihlenburg, F., Finite Element Analysis of Acoustic Scattering (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0908.65091
[4] Thompson, L. L.; Pinsky, P. M., A Galerkin least squares finite element method for the two-dimensional Helmholtz equation, Internat. J. Numer. Methods Engrg., 38, 3, 371-397 (1995) · Zbl 0844.76060
[5] Melenk, J. M., On Generalized Finite Element Methods (1995), University of Maryland, College Park, MD, (Ph.D. thesis)
[6] Melenk, J. M.; Babus˘ka, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 1-4, 289-314 (1996) · Zbl 0881.65099
[7] Babus˘ka, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 4, 727-758 (1997) · Zbl 0949.65117
[8] Strouboulis, T.; Babus˘ka, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 1-3, 43-69 (2000) · Zbl 0983.65127
[9] Strouboulis, T.; Babus˘ka, I.; Copps, K., The generalized finite element method: an example of its implementation and illustration of its performance, International Journal for Numerical Methods in Engineering, 47, 8, 1401-1417 (2000) · Zbl 0955.65080
[10] Strouboulis, T.; Copps, K.; Babus˘ka, I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 32-33, 408-4193 (2001) · Zbl 0997.74069
[11] Cessenat, O., Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problémes de Helmholtz 2D et de Maxwell 3D (1996), Université Paris IX Dauphine, (Ph.D. thesis)
[12] Cessenat, O.; Despres, B., Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35, 1, 255-299 (1998) · Zbl 0955.65081
[13] Farhat, C.; Harari, I.; Franca, L. P., The discontinuous enrichment method, Comput. Methods Appl. Mech. Engrg., 190, 48, 6455-6479 (2001) · Zbl 1002.76065
[14] Farhat, C.; Harari, I.; Hetmaniuk, U., A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput. Methods Appl. Mech. Engrg., 192, 11-12, 1389-1419 (2003) · Zbl 1027.76028
[15] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs, SIAM J. Sci. Comput., 22, 3, 853-890 (2000) · Zbl 0974.65090
[16] Schweitzer, M. A., (A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 29 (2003), Springer-Verlag: Springer-Verlag New York) · Zbl 1016.65099
[17] Hiptmair, R.; Moiola, A.; Perugia, I., Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49, 1, 264-284 (2011) · Zbl 1229.65215
[18] Perugia, I.; Pietra, P.; Russo, A., A plane wave virtual element method for the Helmholtz problem, ESAIM Math. Model. Numer. Anal., 50, 3, 783-808 (2016), Available as arXiv preprint: http://arxiv.org/abs/1505.04965 · Zbl 1343.65137
[19] Strouboulis, T.; Babus˘ka, I.; Hidajat, R., The generalized finite element method for Helmholtz equation: theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg., 195, 37-40, 4711-4731 (2006) · Zbl 1120.76044
[20] Laghrouche, O.; Bettess, P., Short wave modelling using special finite elements, J. Comput. Acoust., 8, 1, 189-210 (2000) · Zbl 1360.76146
[21] Filon, L. N.G., On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edinburgh, 49, 38-47 (1928) · JFM 55.0946.02
[22] Flinn, E. A., A modification of Filon’s method of numerical integration, J. ACM, 7, 4, 181-184 (1960) · Zbl 0121.11703
[23] Levin, D., Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations, Math. Comput., 38, 158, 531-538 (1982) · Zbl 0482.65013
[24] Evans, G. A.; Webster, J. R., A comparison of some methods for the evaluation of highly oscillatory integrals, J. Comput. Appl. Math., 112, 1-2, 55-69 (1999) · Zbl 0947.65148
[25] Iserles, A.; Nørest, I. S.P., Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. A, 461, 2057, 1383-1399 (2005) · Zbl 1145.65309
[26] Olver, S., Numerical Approximation of Highly Oscillatory Integrals (2008), University of Cambridge: University of Cambridge Cambridge, UK, (Ph.D. thesis) · Zbl 1131.65028
[27] Laghrouche, O.; Bettess, P.; Astley, R. J., Modelling of short wave diffraction problems using approximating systems of plane waves, Internat. J. Numer. Methods Engrg., 54, 10, 1501-1533 (2002) · Zbl 1098.76574
[28] Ortiz, P.; Sanchez, E., An improved partition of unity finite element model for diffraction problems, Internat. J. Numer. Methods Engrg., 50, 12, 2727-2740 (2001) · Zbl 1098.76576
[29] Bettess, P.; Shirron, J.; Laghrouche, O.; Peseux, B.; Sugimoto, R.; Trevelyan, J., A numerical integration scheme for special finite elements for the Helmholtz equation, Internat. J. Numer. Methods Engrg., 56, 4, 531-552 (2003) · Zbl 1022.65126
[30] Lasserre, J. B., Integration on a convex polytope, Proc. Amer. Math. Soc., 126, 8, 2433-2441 (1998) · Zbl 0901.65012
[31] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56, 6, 967-981 (2015) · Zbl 1336.65020
[32] Astley, R. J.; Gamallo, P., Special short wave elements for flow acoustics, Computer Methods in Applied Mechanics and Engineering, 194, 2-5, 341-353 (2005) · Zbl 1143.76568
[33] Gamallo, P.; Astley, R. J., The partition of unity finite element method for short wave acoustic propagation on non-uniform potential flows, Internat. J. Numer. Methods Engrg., 65, 3, 425-444 (2006) · Zbl 1178.76229
[34] Huttunen, T.; Gamallo, P.; Astley, R. J., Comparison of two wave element methods for the Helmholtz problem, Commun. Numer. Methods. Eng., 25, 1, 35-52 (2009) · Zbl 1158.65347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.