×

The generalized finite element method for Helmholtz equation. II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. (English) Zbl 1169.76397

Summary: In Part I [T. Strouboulis, I. Babuška, R. Hidajat, Comput. Methods Appl. Mech. Eng. 195, No. 37–40, 4711–4731 (2006; Zbl 1120.76044)] we introduced the \(q\)-version of the generalized finite element method (GFEM) for the Helmholtz equation and we addressed its: (a) pollution error due to the wave number; (b) exponential \(q\)-convergence; (c) robustness to perturbations of the mesh, the roundoff and numerical quadrature errors; and (d) a-posteriori error estimation. Here we continue the development of the GFEM for Helmholtz and we address the effects of: (a) alternative handbook functions and mesh types; (b) the error due to the artificial truncation boundary conditions and its assessment. The conclusions are: (1) the employment of plane-wave, wave-band, and Vekua handbook functions lead to equivalent results; and (2) for high \(q\), the most significant component of error may be the one due to the artificial truncation boundary conditions. A rather straightforward approach for assessing this error is proposed.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics

Citations:

Zbl 1120.76044
Full Text: DOI

References:

[1] Strouboulis, T.; Babuška, I.; Hidajat, R., The generalized finite element method for Helmholtz equation: theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg., 195, 4711-4731 (2006) · Zbl 1120.76044
[2] J.M. Melenk, On Generalized Finite Element Methods, Ph.D. Thesis, University of Maryland, College Park, MD, 1995.; J.M. Melenk, On Generalized Finite Element Methods, Ph.D. Thesis, University of Maryland, College Park, MD, 1995.
[3] Farhat, C.; Harari, I.; Franca, L. P., The discontinuous enrichment method, Comput. Methods Appl. Mech. Engrg., 190, 48, 6455-6479 (2001) · Zbl 1002.76065
[4] Jones, D. S., Acoustic and Electromagnetic Waves (1986), Oxford University Press: Oxford University Press New York
[5] Biwa, S.; Yamamoto, S.; Kobayashi, F.; Ohno, N., Computational multiple scattering analysis for shear wave propagation in unidirectional composites, Inter. Journal of Solids and Structures, 41, 435-458 (2004) · Zbl 1059.74528
[6] Strouboulis, T.; Hidajat, R., Partition of unity method for Helmholtz equation: \(q\)-convergence for plane-wave and wave-band local bases, Appl. Math., 51, 2, 181-204 (2006) · Zbl 1164.65505
[7] Rouch, P.; Ladevèze, P., The variational theory of complex rays: A predictive tool for medium-frequency vibrations, Comput. Methods Appl. Mech. Engrg., 192, 3301-3315 (2003) · Zbl 1054.74602
[8] Riou, H.; Ladevèze, P.; Rouch, P., Extension of the variational theory of complex rays to shells for medium-frequency vibrations, J. Sound Vib., 272, 341-360 (2004)
[9] H. Riou, Sur le calcul des vibrations moyennes et hautes fréquences par la théorie variationnelle des rayon complexes, Ph.D. Thesis, ENS de Cachan, 2004.; H. Riou, Sur le calcul des vibrations moyennes et hautes fréquences par la théorie variationnelle des rayon complexes, Ph.D. Thesis, ENS de Cachan, 2004.
[10] Keller, J. B.; Givoli, D., Exact non-reflecting boundary conditions, J. Comput. Phys., 82, 172-192 (1989) · Zbl 0671.65094
[11] Grote, M. J.; Keller, J. B., On nonreflecting boundary conditions, J. Comput. Phys., 122, 231-243 (1995) · Zbl 0841.65099
[12] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33, 707-725 (1980) · Zbl 0438.35043
[13] Bayliss, A.; Gunzburger, M.; Turkel, E., Boundary conditions for the numerical solution of elliptic equations in exterior domains, SIAM J. Appl. Math., 42, 430-451 (1982) · Zbl 0479.65056
[14] Oden, J. T.; Duarte, C. A.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Engrg., 153, 117-126 (1998) · Zbl 0956.74062
[15] Safjan, A.; Newman, M., On two-dimensional infinite elements utilizing basis functions with compact support, Comput. Methods Appl. Mech. Engrg., 190, 6399-6424 (2001) · Zbl 0986.65106
[16] Safjan, A.; Newman, M., Three-dimensional infinite elements utilizing basis functions with compact support, Comput. Math. Appl., 43, 981-1002 (2002) · Zbl 1050.65114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.