×

Dirichlet spaces of domains bounded by quasicircles. (English) Zbl 1441.30055

The authors characterize the Dirichlet space of a multiply connected domain \(\Sigma\) in the sphere \(\overline{\mathbb C}=\mathbb C\cup\{\infty\}\) bounded by non-intersecting quasicircles \(\Gamma_1,\dots,\Gamma_n\). Assume that \(\infty\in\Sigma\). Let \(\Omega_k^+\) and \(\Omega_k^-\) denote the bounded and unbounded components of the complements of \(\Gamma_k\) in \(\overline{\mathbb C}\), \(\Sigma=\cap_{k=1}^n\Omega_k\). Let \(f=(f_1,\dots,f_n)\) be an \(n\)-tuple of quasiconformally extendible conformal maps \(f_k:\mathbb D^+\to\Omega_k^+\), where \(\mathbb D^+=\{z:|z|<1\}\). Denote the Dirichlet space of \(\Sigma\) by \[\mathcal D_{\infty}(\Sigma)=\left\{h:\Sigma\to\mathbb C: h\;\text{holomorphic},h(\infty)=0,\int_{\Sigma}|h'|^2dA<\infty\right\}.\] For the Cauchy projections \(P(\Omega_k^-)\) of functions on \(\Gamma_j\) into \(\mathcal D_{\infty}(\mathbb D^-)\), define for \(\mathcal C_{f_k^{-1}}h_k=h_k\circ f_k^{-1}|_{\Gamma_k}\), \[\mathbf{I}_f:=\overset n\bigoplus\mathcal D_{\infty}(\mathbb D^-)\to\mathcal D_{\infty}(\Sigma)\] \[(h_1,\dots,h_n)\mapsto\sum_{k=1}^nP(\Omega_k^-)\mathcal C_{f_k^{-1}}h_k.\] The first main result is given in the following theorem.
Theorem 3.9. Let \(\Sigma\), \(\Gamma_k\), \(\Omega_k^+\) and \(\Omega_k^-\) be defined as above. Let \(f=(f_1,\dots,f_n)\) where \(f_k:\mathbb D^+\to\Omega_k^+\) is a conformal map for \(k=1,\dots,n\). Then the map \(\mathbf{I}_f\) is a bounded isomorphism.
Also, the authors introduce the generalized Grunsky operator \(\mathbf{Gr}(f)\) corresponding to the \(n\)-tuple \((f_1,\dots,f_n)\) and derive integral expressions for its blocks. Finally, they show that \[\mathbf{W}=\{(h\circ f_1|_{\mathbb S^1},\dots,h\circ f_n|_{\mathbb S^1}):h\in\mathcal D(\Sigma)\}\subseteq\overset n\bigoplus\mathcal H(\mathbb S^1)\] is the graph of this Grunsky operator. Here \(\mathbb S^1=\{z:|z|=1\}\) and \(\mathcal H(\mathbb S^1)\) is the \(H^{1/2}\) Sobolev space on \(\mathbb S^1\).

MSC:

30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
30H99 Spaces and algebras of analytic functions of one complex variable

References:

[1] Anderson, J. M., The Faber Operator: Rational Approximation and Interpolation, , Vol. 1105 (Springer, Berlin, 1984), pp. 1-10. · Zbl 0578.41024
[2] Bergman, S. and Schiffer, M., Kernel functions and conformal mapping, Compositio Math.8 (1951) 205-249. · Zbl 0043.08403
[3] Çavuş, A., Approximation by generalized Faber series in Bergman spaces on finite regions with a quasiconformal boundary, J. Approx. Theory87(1) (1996) 25-35. · Zbl 0877.30017
[4] Chazarain, J. and Piriou, A., Introduction to the Theory of Linear Partial Differential Equations, , Vol. 14 (North-Holland Publishing Co., Amsterdam, 1982) (Translated from the French). · Zbl 0487.35002
[5] Duren, P. L., Theory of \(H^p\) Spaces, , Vol. 38 (Academic Press, New York, 1970). · Zbl 0215.20203
[6] El-Falla, O., Kellay, K., Mashreghi, J. and Ransford, T., A Primer on the Dirichlet Space, , Vol. 203 (Cambridge University Press, Cambridge, 2014). · Zbl 1304.30002
[7] Gaier, D., The Faber operator and its boundedness, J. Approx. Theory101(2) (1999) 265-277. · Zbl 0943.30025
[8] Hummel, J. A., Inequalities of Grunsky type for Aharonov pairs, J. Anal. Math.25 (1972) 217-257. · Zbl 0273.30011
[9] Kats, B. A., The Riemann boundary value problem on non-rectifiable curves and related questions, Complex Var. Elliptic Equ.59(8) (2014) 1053-1069. · Zbl 1314.30063
[10] B. A. Kats, The Riemann boundary value problem for holomorphic matrices on a nonrectifiable curve, Izv. Vyssh. Uchebn. Zaved. Mat.2017(2) (2017) 22-33; translation in Russian Math. (Iz. VUZ)61(2) (2017) 17-27. · Zbl 1404.30043
[11] Lehto, O., Univalent Functions and Teichmüller Spaces, , Vol. 109 (Springer-Verlag, New York, 1987). · Zbl 0606.30001
[12] V. Mazya, Sobolev spaces with applications to elliptic partial differential equations, 2nd, rev. and augmented edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 342 (Springer, Heidelberg, 2011). · Zbl 1217.46002
[13] Osborn, H., The Dirichlet functional I, J. Math. Anal. Appl.1 (1960) 61-112. · Zbl 0099.08103
[14] Pommerenke, C., Univalent Functions, (Vandenhoeck & Ruprecht, Göttingen, 1975), With a chapter on quadratic differentials by Gerd Jensen. · Zbl 0298.30014
[15] Radnell, D., Schippers, E. and Staubach, W., Dirichlet problem and Sokhotski-Plemelj jump formula on Weil-Petersson class quasidisks, Ann. Acad. Sci. Fennicae Math.41 (2016) 119-127. · Zbl 1338.31006
[16] Radnell, D., Schippers, E. and Staubach, W., Quasiconformal Teichmuller theory as an analytic foundation for two-dimensional conformal field theory, in Lie Algebras, Vertex Operator Algebras, and Related Topics, , Vol. 695 (American Mathematical Society, Providence, RI, 2017), pp. 205-238. · Zbl 1393.30034
[17] Radnell, D., Schippers, E. and Staubach, W., Model of the Teichmüller space of genus zero bordered surfaces by period maps, Conf. Geom. Dyn.23 (2019) 17-31. · Zbl 1426.30031
[18] Schippers, E. and Staubach, W., Harmonic reflection in quasicircles and well-posedness of a Riemann-Hilbert problem on quasidisks, J. Math. Anal. Appl.448(2) (2017) 864-884. · Zbl 1357.31001
[19] Schippers, E. and Staubach, W., Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator, Complex Anal. Oper. Theory12(2) (2018) 325-354. · Zbl 1391.30054
[20] Shen, Y., On Grunsky operator, Sci. China Ser. A50(12) (2007) 1805-1817. · Zbl 1138.30305
[21] Shen, Y., Faber polynomials with applications to univalent functions with quasiconformal extensions, Sci. China Ser. A52(10) (2009) 2121-2131. · Zbl 1181.30014
[22] Suetin, P. K., Series of Faber Polynomials, , Vol. 1 (Gordon and Breach Science Publishers, Amsterdam, 1998), Translated from the 1984 Russian original by E. V. Pankratiev [E. V. Pankrat’ev]. · Zbl 0936.30027
[23] Tatkhajan, L. A. and Teo, L.-P., Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc.183(861) (2006) viii+119 pp. · Zbl 1243.32010
[24] Wei, H. Y., Wang, M. L. and Hu, Y., A note on Faber operator, Acta Math. Sin. (Engl. Ser.)30(3) (2014) 499-504. · Zbl 1295.30126
[25] Yıldırır, Y. E. and Çetintaş, R., Boundedness of Faber operators, J. Inequal. Appl.2013 (2013) Article No. 257, 5 pp. · Zbl 1283.41006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.