×

A note on Faber operator. (English) Zbl 1295.30126

Let \(D\) be a bounded domain in \(\widehat{C}\) (the extended complex plane), whose boundary \(\Gamma\) is a rectifiable Jordan curve, and let \(D^*=\widehat{C}\setminus \overline{D}\). By \(B_{2}(D)\) the authors denote the Besov space of all analytic functions in \(D\) with square integrable derivative. Let \(\Delta\) denote the open unit disk. Assume that \(\psi: \Delta^*\to D^*\) is a conformal mapping such that \(\psi(\infty)=\infty\) and \(\psi^\prime(\infty)>0\). The authors introduce the Faber operator \[ Tf(z)=\frac{1}{2\pi i}\int_{\partial \Delta}\frac{f(w)\psi^\prime(w)}{\psi(w)-z}\, d w, \quad z\in D\cup D^*,\quad f\in B_{2}(\Delta), \] and prove that the following are equivalent:
(1) \(T\) is a bounded isomorphism from \(B_{2}(\Delta)\) onto \(B_{2}(D)\);
(2) \(T\) is a bounded operator from \(B_{2}(\Delta)\) into \(B_{2}(D^*)\) with \(\|T\|<1\);
(3) \(\Gamma\) is a quasi-circle.
In particular, this result shows that the conjecture, stated in [J. M. Anderson, Lect. Notes Math. 1105, 1–10 (1984; Zbl 0578.41024)], that, for every \(1<p<\infty\) and every \(D\) with a rectifiable Jordan curve as boundary, \(T\) is a bounded isomorphism from \(B_{p}(\Delta)\) onto \(B_{p}(D)\), is not true in the case \(p=2\).

MSC:

30H25 Besov spaces and \(Q_p\)-spaces
46E15 Banach spaces of continuous, differentiable or analytic functions
47B38 Linear operators on function spaces (general)

Citations:

Zbl 0578.41024
Full Text: DOI

References:

[1] Ahlfors, L. V.: Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966 · Zbl 0138.06002
[2] Andersson, J. E.: On the Degree of Polynomial and Rational Approximation of Holomorphic Functions, Dissertation, Univ. of Goteborg, Goteborg, 1975
[3] Anderson, J. M.: The Faber operator. Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 1–10 · Zbl 0578.41024
[4] Anderson, J. M., Clunie, J.: Isomorphisms of the disc algebra and inverse Faber sets. Math. Z., 188, 545–558 (1985) · Zbl 0584.30011 · doi:10.1007/BF01161656
[5] Bergman, S., Schiffer, M. M.: Kernal functions and conformal mappings. Compos. Math., 8, 205–249 (1951) · Zbl 0043.08403
[6] Duren, P.: Theory of H p Spaces, Academic Press, New York, 1970 · Zbl 0215.20203
[7] Frerick, L., Muller, J.: Polynomial approximation and maximal convergence on Faber sets. Constr. Approx., 10, 427–438 (1994) · Zbl 0829.41005 · doi:10.1007/BF01212568
[8] Gaier, D.: The Faber operator and its boundedness. J. Approx. Theory, 101, 265–277 (1999) · Zbl 0943.30025 · doi:10.1006/jath.1999.3400
[9] Garnett, J. B.: Bounded Analytic Functions, Academic Press, New York, 1981 · Zbl 0469.30024
[10] Kovari, T., Pommerenke, Ch.: On Faber polynomials and Faber expansions. Math. Z., 99, 193–206 (1967) · Zbl 0197.05505 · doi:10.1007/BF01112450
[11] Kühnau, R.: Verzerrungssätze und Koeffizientenbedingungen vom GRUNSKYschen Typ für quasi-konforme Abbildungen. Math. Nachr., 48, 77–105 (1971) · Zbl 0226.30021 · doi:10.1002/mana.19710480107
[12] Pommerenke, Ch.: Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975
[13] Schiffer, M.: Fredholm eigenvalues and Grunsky matrices. Ann. Pol. Math., 39, 149–164 (1981)
[14] Zhu, K.: Operator Theory in Function Spaces, Dekker, New York, 1990 · Zbl 0706.47019
[15] Zinsmeister, M.: Les domaines de Carleson. Michigan Math. J., 36, 213–220 (1989) · Zbl 0692.30030 · doi:10.1307/mmj/1029003944
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.