×

A model of the Teichmüller space of genus-zero bordered surfaces by period maps. (English) Zbl 1426.30031

The period mappings of compact surfaces are known to be one of the useful ways of associating complex structures on Teichmüller space. Generalizing this well-known fact, in this paper, the authors give a new construction enabling the idea to infinite dimension by showing that the generalized period mapping defines a new complex structure on the Teichmüller space of genus zero having \(n\) borders.
The authors make a guess about the extendibility of this case to non-zero-genus surfaces with boundary and also they state that there are many properties of this model which can be obtained by classical methods

MSC:

30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

References:

[1] Ahlfors, Lars V.; Sario, Leo, Riemann surfaces, Princeton Mathematical Series, No. 26, xi+382 pp. (1960), Princeton University Press, Princeton, N.J. · Zbl 0196.33801
[2] Bergman, S.; Schiffer, M., Kernel functions and conformal mapping, Compositio Math., 8, 205-249 (1951) · Zbl 0043.08403
[3] Cavu\c{s}, Abdullah, Approximation by generalized Faber series in Bergman spaces on finite regions with a quasiconformal boundary, J. Approx. Theory, 87, 1, 25-35 (1996) · Zbl 0877.30017 · doi:10.1006/jath.1996.0090
[4] Chae, Soo Bong, Holomorphy and calculus in normed spaces, Monographs and Textbooks in Pure and Applied Mathematics 92, xii+421 pp. (1985), Marcel Dekker, Inc., New York · Zbl 0571.46031
[5] Duren, Peter L., Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 259, xiv+382 pp. (1983), Springer-Verlag, New York · Zbl 0514.30001
[6] Gardiner, Frederick P., Schiffer’s interior variation and quasiconformal mapping, Duke Math. J., 42, 371-380 (1975) · Zbl 0347.30017
[7] Grosse-Erdmann, K.-G., A weak criterion for vector-valued holomorphy, Math. Proc. Cambridge Philos. Soc., 136, 2, 399-411 (2004) · Zbl 1055.46026 · doi:10.1017/S0305004103007254
[8] Hummel, J. A., Inequalities of Grunsky type for Aharonov pairs, J. Analyse Math., 25, 217-257 (1972) · Zbl 0273.30011 · doi:10.1007/BF02790039
[9] Mujica, Jorge, Complex analysis in Banach spaces, North-Holland Mathematics Studies 120, xii+434 pp. (1986), North-Holland Publishing Co., Amsterdam · Zbl 0586.46040
[10] Nag, Subhashis, The complex analytic theory of Teichm\"{u}ller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, xiv+427 pp. (1988), John Wiley & Sons, Inc., New York · Zbl 0667.30040
[11] Nag, Subhashis, A period mapping in universal Teichm\"{u}ller space, Bull. Amer. Math. Soc. (N.S.), 26, 2, 280-287 (1992) · Zbl 0749.32013 · doi:10.1090/S0273-0979-1992-00273-2
[12] Nag, Subhashis; Sullivan, Dennis, Teichm\"{u}ller theory and the universal period mapping via quantum calculus and the \(H^{1/2}\) space on the circle, Osaka J. Math., 32, 1, 1-34 (1995) · Zbl 0820.30027
[13] Pommerenke, Christian, Univalent functions, Studia Mathematica/Mathematische Lehrb\`“{u}cher, Band XXV, 376 pp. (1975), Vandenhoeck & Ruprecht, G\'”{o}ttingen · Zbl 0298.30014
[14] Radnell, David Aubrey Alfred, Schiffer variation in Teichmuller space, determinant line bundles and modular functors, 153 pp. (2003), ProQuest LLC, Ann Arbor, MI
[15] Radnell, David; Schippers, Eric, Quasisymmetric sewing in rigged Teichm\"{u}ller space, Commun. Contemp. Math., 8, 4, 481-534 (2006) · Zbl 1108.30034 · doi:10.1142/S0219199706002210
[16] Radnell, David; Schippers, Eric, A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface, J. Anal. Math., 108, 277-291 (2009) · Zbl 1183.30020 · doi:10.1007/s11854-009-0025-0
[17] Radnell, David; Schippers, Eric, Fiber structure and local coordinates for the Teichm\"{u}ller space of a bordered Riemann surface, Conform. Geom. Dyn., 14, 14-34 (2010) · Zbl 1196.30040 · doi:10.1090/S1088-4173-10-00206-7
[18] RSS_Dirichlet_full David Radnell, Eric Schippers, and Wolfgang Staubach, Dirichlet spaces of domains bounded by quasicircles, to appear in Commun. Contemp. Math., preprint arXiv:1705.01279v2. · Zbl 1441.30055
[19] Schippers, Eric; Staubach, Wolfgang, Harmonic reflection in quasicircles and well-posedness of a Riemann-Hilbert problem on quasidisks, J. Math. Anal. Appl., 448, 2, 864-884 (2017) · Zbl 1357.31001 · doi:10.1016/j.jmaa.2016.11.041
[20] Schippers, Eric; Staubach, Wolfgang, Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator, Complex Anal. Oper. Theory, 12, 2, 325-354 (2018) · Zbl 1391.30054 · doi:10.1007/s11785-016-0598-4
[21] Shen, YuLiang, Faber polynomials with applications to univalent functions with quasiconformal extensions, Sci. China Ser. A, 52, 10, 2121-2131 (2009) · Zbl 1181.30014 · doi:10.1007/s11425-009-0062-2
[22] Suetin, P. K., Series of Faber polynomials, Analytical Methods and Special Functions 1, xx+301 pp. (1998), Gordon and Breach Science Publishers, Amsterdam · Zbl 0936.30027
[23] Takhtajan, Leon A.; Teo, Lee-Peng, Weil-Petersson metric on the universal Teichm\"{u}ller space, Mem. Amer. Math. Soc., 183, 861, viii+119 pp. (2006) · Zbl 1243.32010 · doi:10.1090/memo/0861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.