×

Gauge theories on \(\kappa\)-Minkowski spaces: twist and modular operators. (English) Zbl 1437.83041

Summary: We discuss the construction of \(\kappa\)-Poincaré invariant actions for gauge theories on \(\kappa\)-Minkowski spaces. We consider various classes of untwisted and (bi)twisted differential calculi. Starting from a natural class of noncommutative differential calculi based on a particular type of twisted derivations belonging to the algebra of deformed translations, combined with a twisted extension of the notion of connection, we prove an algebraic relation between the various twists and the classical dimension d of the \(\kappa\)-Minkowski space(-time) ensuring the gauge invariance of the candidate actions for gauge theories. We show that within a natural differential calculus based on a distinguished set of twisted derivations, d=5 is the unique value for the classical dimension at which the gauge action supports both the gauge invariance and the \(\kappa\)-Poincaré invariance. Within standard (untwisted) differential calculi, we show that the full gauge invariance cannot be achieved, although an invariance under a group of transformations constrained by the modular (Tomita) operator stemming from the \(\kappa\)-Poincaré invariance still holds.

MSC:

83C45 Quantization of the gravitational field
83C65 Methods of noncommutative geometry in general relativity
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Doplicher, S.; Fredenhagen, K.; Roberts, JE, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys., 172, 187 (1995) · Zbl 0847.53051
[2] Doplicher, S.; Fredenhagen, K.; Roberts, JE, Space-time quantization induced by classical gravity, Phys. Lett., B 331, 39 (1994)
[3] Majid, S.; Ruegg, H., Bicrossproduct structure of κ-Poincaré group and noncommutative geometry, Phys. Lett., B 334, 348 (1994) · Zbl 1112.81328
[4] J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, q-deformation of Poincaré algebra, Phys. Lett.B 264 (1991) 331 [INSPIRE].
[5] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett., B 293, 344 (1992) · Zbl 0834.17022
[6] Drinfeld, VG, Quantum Groups, J. Sov. Math., 41, 898 (1988) · Zbl 0641.16006
[7] L.A. Takhtadzhyan, Lectures on quantum groups, Nankai Lectures on Mathematical Physics, Mo-Lin-Ge and Bao-Heng-Zhao eds., World Scientific (1989).
[8] Lukierski, J., Kappa-Deformations: Historical Developments and Recent Results, J. Phys. Conf. Ser., 804 (2017)
[9] G. Amelino-Camelia, Doubly special relativity, Nature418 (2002) 34 [gr-qc/0207049] [INSPIRE]. · Zbl 1070.83500
[10] Amelino-Camelia, G.; Gubitosi, G.; Marciano, A.; Martinetti, P.; Mercati, F., A No-pure-boost uncertainty principle from spacetime noncommutativity, Phys. Lett., B 671, 298 (2009)
[11] Kowalski-Glikman, J., Introduction to doubly special relativity, Lect. Notes Phys., 669, 131 (2005)
[12] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., The principle of relative locality, Phys. Rev., D 84 (2011) · Zbl 1228.83040
[13] Gubitosi, G.; Mercati, F., Relative Locality in κ-Poincaré, Class. Quant. Grav., 30, 145002 (2013) · Zbl 1273.83066
[14] Amelino-Camelia, G.; Astuti, V.; Rosati, G., Relative locality in a quantum spacetime and the pregeometry of κ-Minkowski, Eur. Phys. J., C 73, 2521 (2013)
[15] Dimitrijević, M.; Jonke, L.; Möller, L.; Tsouchnika, E.; Wess, J.; Wohlgenannt, M., Deformed field theory on κ-spacetime, Eur. Phys. J., C 31, 129 (2003) · Zbl 1032.81529
[16] Dimitrijević, M.; Meyer, F.; Möller, L.; Wess, J., Gauge theories on the kappa Minkowski space-time, Eur. Phys. J., C 36, 117 (2004) · Zbl 1191.81204
[17] Dimitrijević, M.; Jonke, L.; Möller, L., U(1) gauge field theory on κ-Minkowski space, JHEP, 09, 068 (2005)
[18] Dimitrijević, M.; Jonke, L.; Pachol, A., Gauge Theory on Twisted κ-Minkowski: Old Problems and Possible Solutions, SIGMA, 10, 063 (2014) · Zbl 1295.81125
[19] A. Agostini, G. Amelino-Camelia, M. Arzano and F. D’Andrea, Action functional for kappa-Minkowski noncommutative spacetime, hep-th/0407227 [INSPIRE]. · Zbl 1051.83003
[20] Agostini, A.; Amelino-Camelia, G.; D’Andrea, F., Hopf algebra description of noncommutative space-time symmetries, Int. J. Mod. Phys., A 19, 5187 (2004) · Zbl 1078.81036
[21] Agostini, A.; Amelino-Camelia, G.; Arzano, M.; Marciano, A.; Tacchi, RA, Generalizing the Noether theorem for Hopf-algebra spacetime symmetries, Mod. Phys. Lett., A 22, 1779 (2007) · Zbl 1143.83317
[22] Amelino-Camelia, G.; Arzano, M., Coproduct and star product in field theories on Lie algebra noncommutative space-times, Phys. Rev., D 65 (2002)
[23] Meljanac, S.; Samsarov, A., Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys., A 26, 1439 (2011) · Zbl 1214.81285
[24] Harikumar, E.; Juric, T.; Meljanac, S., Electrodynamics on κ-Minkowski space-time, Phys. Rev., D 84 (2011)
[25] Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M., Scalar field propagation in the 𝜙^4kappa-Minkowski model, JHEP, 12, 010 (2011) · Zbl 1306.81305
[26] Grosse, H.; Wohlgenannt, M., On κ-deformation and UV/IR mixing, Nucl. Phys., B 748, 473 (2006)
[27] H.-J. Matschull and M. Welling, Quantum mechanics of a point particle in (2+1)-dimensional gravity, Class. Quant. Grav.15 (1998) 2981 [gr-qc/9708054] [INSPIRE]. · Zbl 1063.83534
[28] Freidel, L.; Livine, ER, 3D Quantum Gravity and Effective Noncommutative Quantum Field Theory, Phys. Rev. Lett., 96, 221301 (2006) · Zbl 1228.83047
[29] Grosse, H.; Wulkenhaar, R., Renormalization of 𝜑^4-theory on noncommutative ℝ^2in the matrix base, JHEP, 12, 019 (2003)
[30] Grosse, H.; Wulkenhaar, R., Renormalization of 𝜑^4-theory on noncommutative ℝ^4in the matrix base, Commun. Math. Phys., 256, 305 (2005) · Zbl 1075.82005
[31] Grosse, H.; Wulkenhaar, R., Self-dual noncommutative 𝜑^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, Commun. Math. Phys., 329, 1069 (2014) · Zbl 1305.81129
[32] Grosse, H.; Wohlgenannt, M., Induced gauge theory on a noncommutative space, Eur. Phys. J., C 52, 435 (2007) · Zbl 1189.81217
[33] de Goursac, A.; Wallet, J-C; Wulkenhaar, R., Noncommutative Induced Gauge Theory, Eur. Phys. J., C 51, 977 (2007) · Zbl 1189.81215
[34] Wallet, J-C, Noncommutative Induced Gauge Theories on Moyal Spaces, J. Phys. Conf. Ser., 103 (2008)
[35] de Goursac, A.; Wallet, J-C; Wulkenhaar, R., On the vacuum states for noncommutative gauge theory, Eur. Phys. J., C 56, 293 (2008) · Zbl 1189.81214
[36] de Goursac, A.; Tanasa, A.; Wallet, JC, Vacuum configurations for renormalizable non-commutative scalar models, Eur. Phys. J., C 53, 459 (2008) · Zbl 1189.81213
[37] F. Vignes-Tourneret, Renormalization of the Orientable Non-commutative Gross-Neveu Model, Annales Henri Poincaré8 (2007) 427 [math-ph/0606069] [INSPIRE]. · Zbl 1133.81058
[38] de Goursac, A.; Wallet, J-C, Symmetries of noncommutative scalar field theory, J. Phys., A 44 (2011) · Zbl 1208.81192
[39] Martinetti, P.; Vitale, P.; Wallet, J-C, Noncommutative gauge theories on \({\mathbb{R}}_{\theta}^2\) as matrix models, JHEP, 09, 051 (2013) · Zbl 1342.81309
[40] Mercati, F.; Sergola, M., Pauli-Jordan function and scalar field quantization in κ-Minkowski noncommutative spacetime, Phys. Rev. D, D 98 (2018)
[41] T. Poulain and J.C. Wallet, κ-Poincaré invariant quantum field theories with KMS weight, Phys. Rev.D 98 (2018) 025002 [arXiv:1801.02715] [INSPIRE].
[42] T. Poulain and J.-C. Wallet, κ-Poincaré invariant orientable field theories at one-loop, JHEP01 (2019) 064 [arXiv:1808.00350] [INSPIRE].
[43] Durhuus, B.; Sitarz, A., Star product realizations of kappa-Minkowski space, J. Noncommut. Geom., 7, 605 (2013) · Zbl 1282.46063
[44] D. Williams, Crossed Products of C^*-algebras, Math. Surveys and Monographs, Vol. 134, AMS (2007). · Zbl 1119.46002
[45] Wallet, J-C, Exact partition functions for gauge theories on \({\mathbb{R}}_{\uplambda}^3 \), Nucl. Phys., B 912, 354 (2016) · Zbl 1349.81173
[46] Géré, A.; Jurić, T.; Wallet, J-C, Noncommutative gauge theories on \({\mathbb{R}}_{\uplambda}^3 \): perturbatively finite models, JHEP, 12, 045 (2015) · Zbl 1387.81266
[47] Vitale, P.; Wallet, J-C, Noncommutative field theories on \({\mathbb{R}}_{\uplambda}^3 \): Toward UV/IR mixing freedom, JHEP, 04, 115 (2013) · Zbl 1342.81641
[48] Jurić, T.; Poulain, T.; Wallet, J-C, Closed star product on noncommutative ℝ^3and scalar field dynamics, JHEP, 05, 146 (2016) · Zbl 1388.83538
[49] Jurić, T.; Poulain, T.; Wallet, J-C, Involutive representations of coordinate algebras and quantum spaces, JHEP, 07, 116 (2017) · Zbl 1380.83095
[50] J. Kustermans, KMS-weights on C^*-algebras, funct-an/9704008. · Zbl 0998.46025
[51] Combes, F., Poids sur une C^*-algèbre, J. Math. Pures Appl., 47, 57 (1968) · Zbl 0165.15401
[52] J. Kustermans and S. Vaes, Weight theory of C^*-algebraic quantum groups, math/9902015. · Zbl 1034.46067
[53] M. Takesaki, Theory of Operator Algebras I-III, EMS Vols. 124, 125, 127, Springer (2002).
[54] A. Connes and C. Rovelli, Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories, Class. Quant. Grav.11 (1994) 2899 [gr-qc/9406019] [INSPIRE]. · Zbl 0821.46086
[55] A. Connes and H. Moscovici, Type III and spectral triples, in Traces in number theory, geometry and quantum fields, Aspects of Math. E38, Vieweg, Wiesbaden (2008), pp. 57. · Zbl 1159.46041
[56] M. Matassa, On the spectral and homological dimension of k-Minkowski space, arXiv:1309.1054 [INSPIRE]. · Zbl 1283.83028
[57] Matassa, M., A modular spectral triple for κ-Minkowski space, J. Geom. Phys., 76, 136 (2014) · Zbl 1283.83028
[58] Devastato, A.; Farnsworth, S.; Lizzi, F.; Martinetti, P., Lorentz signature and twisted spectral triples, JHEP, 03, 089 (2018) · Zbl 1388.83534
[59] Landi, G.; Martinetti, P., Gauge transformations for twisted spectral triples, Lett. Math. Phys., 108, 2589 (2018) · Zbl 1404.58015
[60] M. Dubois-Violette, Lectures on graded differential algebras and noncommutative geometry, Noncommutative Differential Geometry and Its Applications to Physics, Springer Netherlands, pp. 245-306 (2001). · Zbl 1038.58004
[61] Dubois-Violette, M.; Kerner, R.; Madore, J., Noncommutative Differential Geometry and New Models of Gauge Theory, J. Math. Phys., 31, 323 (1990) · Zbl 0704.53082
[62] Wallet, J-C, Derivations of the Moyal algebra and Noncommutative gauge theories, SIGMA, 5, 013 (2009) · Zbl 1160.81470
[63] Cagnache, E.; Masson, T.; Wallet, J-C, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus, J. Noncommut. Geom., 5, 39 (2011) · Zbl 1226.81279
[64] Géré, A.; Vitale, P.; Wallet, J-C, Quantum gauge theories on noncommutative three-dimensional space, Phys. Rev., D 90 (2014)
[65] Steinacker, H., Emergent Gravity from Noncommutative Gauge Theory, JHEP, 12, 049 (2007) · Zbl 1246.81153
[66] Grosse, H.; Steinacker, H.; Wohlgenannt, M., Emergent Gravity, Matrix Models and UV/IR Mixing, JHEP, 04, 023 (2008) · Zbl 1246.81162
[67] Steinacker, H., Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav., 27, 133001 (2010) · Zbl 1255.83007
[68] Blaschke, DN; Kronberger, E.; Rofner, A.; Schweda, M.; Sedmik, RIP; Wohlgenannt, M., On the Problem of Renormalizability in Non-Commutative Gauge Field Models: A Critical Review, Fortsch. Phys., 58, 364 (2010) · Zbl 1191.81200
[69] Sitarz, A., Noncommutative differential calculus on the kappa Minkowski space, Phys. Lett., B 349, 42 (1995)
[70] Majid, S., Classification of bicovariant differential calculi, J. Geom. Phys., 25, 119 (1998) · Zbl 0952.17012
[71] F. Mercati and A. Sitarz, κ-Minkowski differential calculi and star product, PoS(CNCFG2010)030 (2010) [arXiv:1105.1599] [INSPIRE].
[72] Mercati, F., Quantum κ-deformed differential geometry and field theory, Int. J. Mod. Phys., D 25, 1650053 (2016) · Zbl 1338.81218
[73] L.H. Rowen, Ring theory, Vol. 1, Pure and Applied Mathematics 127, Academic Press Inc., Boston MA (1988). · Zbl 0651.16002
[74] Bäck, P.; Richter, J.; Silvestrov, S., Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24, 174 (2018) · Zbl 1446.17001
[75] de Goursac, A.; Masson, T.; Wallet, J-C, Noncommutative epsilon-graded connections, J. Noncommut. Geom., 6, 343 (2012) · Zbl 1275.58003
[76] P. Mathieu and J.-C. Wallet, Connection on bimodule on κ-deformed space-time, in preparation.
[77] von Neumann, J., Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann., 104, 570 (1931) · Zbl 0001.24703
[78] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, Princeton (1955). · Zbl 0064.21503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.