×

Noncommutative \(\varepsilon \)-graded connections. (English) Zbl 1275.58003

The authors and Wulkenhaar exhibited a new gauge theory on the Moyal space from a one-loop effective action \[ S={1\over 4} \int d^D x(F_{\mu\nu}* F_{\mu\nu}+ \Omega^{\prime 2}\{{\mathcal A}_\mu,{\mathcal A}_\nu\}2_*+\kappa{\mathcal A}_\mu*{\mathcal A}_\mu), \] (§3 (3.15)) of the \(\phi^4\)-theory with the Grosse-Wulkenhaar term \[ S= \int d\,Dx\Biggl({1\over 2}(\partial_\mu\phi)^2+ {\Omega^2\over 2}(\widetilde x_\mu\psi)^2+ {m^2\over 2}\phi^2+ \lambda\phi^{*4}\Biggr) \]
[A. de Goursac et al., Eur. Phys. J. C, Part. Fields 56, No. 2, 293–304 (2008; Zbl 1189.81214); cf. H. Grosse and R. Wulkenhaar, Commun. Math. Phys. 256, No. 2, 305–374 (2005; Zbl 1075.82005); H. Grosse and M. Wohlgenannt, Eur. Phys. J. C, Part. Fields 52, No. 2, 435–450 (2007; Zbl 1189.81217)].
In this paper, adopting the formalism of derivation-based differential calculus and \(\varepsilon\)-connection, a mathematical interpretation of the theory (3.15) as constructed as graded curvature, is given. For this purpose, in §2. Noncommutative geometry based on \(\varepsilon\)-connection, a well written review on \(\varepsilon\)-graded algebra and \(\varepsilon\)-derivations and connections is given.
Let \(\mathbb{K}\) be a field, \(\mathbb{K}^*\) its multiplicative group, and \(\Gamma\) an abelian group. Then a commutative factor \(\varepsilon\) is a map \(\varepsilon: \Gamma\times\Gamma\to\mathbb{K}^*\) satisfying \(\varepsilon(i, j)\varepsilon(j,i)= 1\), \(\varepsilon(i,j+ k)= \varepsilon(i, j)\varepsilon(i, k)\), \(\varepsilon(i+ j,k)= \varepsilon(i,k)\varepsilon(j,k)\). An \(\varepsilon\)-Lie algebra is a \(\Gamma\)-graded vector space with the bracket product satisfying \[ [a,b]_\varepsilon=- \varepsilon(|a|, |b|)[b, a]_\varepsilon. \] An associative, unital \(\Gamma\)-graded \(\mathbb{K}\)-algebra \(A^\bullet\) is called \(\varepsilon\)-graded algebra if \(A^\bullet\) endowed a commutation factor \(\varepsilon\). Then to define \([a, b]_\varepsilon= ab- \varepsilon(|a|, |b|)ba\), we have an \(\varepsilon\)-Lie algebra \(A^\bullet_{\text{Lie},\varepsilon^\bullet}\). Typical example is the algebra (and Lie algebra) of matrix valued differential forms. Then \(\varepsilon\)-derivations, differential calculus based on \(\varepsilon\)-derivations and \(\varepsilon\)-connections are explained [M. Dubois-Violette, Math. Phys. Stud. 23, 245–306 (2001; Zbl 1038.58004)].
In §3, after dealing with \(\varepsilon\)-graded commutative algebra for super-manifolds and general properties of \(\varepsilon\)-graded matrix algebras, their differential calculus and their space of \(\varepsilon\)-connections, the Moyal algebra \({\mathcal M}_\theta\) is explained (§3.4). Then taking \(A^0_\theta={\mathcal M}_\theta\), \(A^1_\theta={\mathcal M}_\theta\), and define \(A^\bullet_\theta\) as the direct sum \(A^0_\theta\oplus A^1_\theta\) with the product \[ (a,b)\cdot(c,d)= (a* c+\alpha b* d,\,a* d+ b* c), \] \(\alpha\) is a real parameter, and define \(\varepsilon(i,j)= (-1)^{ij}\), \(i,j\in\mathbb{Z}_2\), an \(\varepsilon\)-graded algebra \({\mathcal A}^\bullet_\theta\) is defined. The authors say that this definition of \({\mathcal A}^\bullet_\theta\) mimics the Langmann-Szabo duality in the scalar case [E. Langmann and R. J. Szabo, Phys. Lett., B 533, No. 1–2, 168–177 (2002; Zbl 0994.81116)]. Then adopting the general theory in §2, \(\varepsilon\)-connections for \(A^\bullet_\theta\) are studied and recovered (3.15) by computing \(\text{Tr}(|F_{\text{ad}_a,\text{ad}_b}|^2)\). Moreover, under mild assumptions, an additional scalar field coupled to gauge fields, which can be interpreted as a Higgs field, is obtained ((3.24), (3.25)). The authors say that this is somewhat similar the interpretation of covariant coordinates as Higgs fields in the context of gauge theory models on Moyal algebras [E. Cagnache et al., J. Noncommut. Geom. 5, No. 1, 39–67 (2011; Zbl 1226.81279)].

MSC:

58B34 Noncommutative geometry (à la Connes)
17B75 Color Lie (super)algebras
46L87 Noncommutative differential geometry
81T75 Noncommutative geometry methods in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] M. Artin and J. J. Zhang, Noncommutative projective schemes. Adv. Math. 109 (1994), 228-287. · Zbl 0833.14002 · doi:10.1006/aima.1994.1087
[2] Yu. A. Bahturin and M. V. Zaicev, Group gradings on matrix algebras. Canad. Math. Bull. 45 (2002), 499-508. · Zbl 1022.16032 · doi:10.4153/CMB-2002-051-x
[3] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, Topological field theory. Phys. Rep. 209 (1991), 129-340.
[4] N. Bourbaki, Éléments de Mathématiques, Algèbre, Chapitres 1 à 3 . Springer-Verlag, Berlin 2007. · Zbl 1111.00001
[5] E. Cagnache, T. Masson, and J.-C. Wallet, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus. J. Noncommut. Geom. 5 (2011), 39-67. · Zbl 1226.81279 · doi:10.4171/JNCG/69
[6] A. H. Chamseddine, A. Connes, and M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11 (2007), 991-1089. · Zbl 1140.81022 · doi:10.4310/ATMP.2007.v11.n6.a3
[7] A. Connes, Non-commutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62 (1985), 41-144. · Zbl 0592.46056 · doi:10.1007/BF02698807
[8] A. de Goursac, On the effective action of noncommutative Yang-Mills theory. J. Phys. Conf. Ser. 103 (2008), 012010.
[9] A. de Goursac, On the origin of the harmonic term in noncommutative quantum field the- ory. SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), 048. · Zbl 1217.81137 · doi:10.3842/SIGMA.2010.048
[10] A. de Goursac, J.-C. Wallet, and R. Wulkenhaar, Noncommutative induced gauge theory. Eur. Phys. J. C Part. Fields 51 (2007), 977-987. · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[11] A. de Goursac, J.-C. Wallet, and R. Wulkenhaar, On the vacuum states for non- commutative gauge theory. Eur. Phys. J. C Part. Fields 56 (2008), 293-304. · Zbl 1189.81214 · doi:10.1140/epjc/s10052-008-0652-0
[12] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 403-408. · Zbl 0661.17012
[13] M. Dubois-Violette, Noncommutative differential geometry, quantum mechanics and gauge theory. In Differential geometric methods in theoretical physics (Rapallo, 1990), Lecture Notes in Phys. 375, Springer, Berlin 1991, 13-24. · Zbl 0744.53042
[14] M. Dubois-Violette, Lectures on graded differential algebras and noncommutative geom- etry. In Noncommutative differential geometry and its applications to physics , Math. Phys. Stud. 23, Kluwer Acad. Publ., Dordrecht 2001, 245-306. · Zbl 1038.58004
[15] M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31 (1990), 316-322. · Zbl 0704.53081 · doi:10.1063/1.528916
[16] M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory. J. Math. Phys. 31 (1990), 323-330. · Zbl 0704.53082 · doi:10.1063/1.528917
[17] M. Dubois-Violette and T. Masson, SU.n/-connections and noncommutative differential geometry. J. Geom. Phys. 25 (1998), 104-118. · Zbl 0933.58007 · doi:10.1016/S0393-0440(97)00033-8
[18] M. Dubois-Violette and P. W. Michor, Dérivations et calcul différentiel non commutatif II. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 927-931. · Zbl 0829.16028
[19] M. Dubois-Violette and P. W. Michor, Connections on central bimodules in noncom- mutative differential geometry. J. Geom. Phys. 20 (1996), 218-232. · Zbl 0867.53023 · doi:10.1016/0393-0440(95)00057-7
[20] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras . Contemporary Soviet Mathematics, Consultants Bureau, New York 1986. · Zbl 0667.17005
[21] J. M. Gracia-Bondía and J. C. Várilly, Algebras of distributions suitable for phase-space quantum mechanics. I. J. Math. Phys. 29 (1988), 869-879. · Zbl 0652.46026 · doi:10.1063/1.528200
[22] H. Grosse and G. Reiter, Graded differential geometry of graded matrix algebras. J. Math. Phys. 40 (1999), 6609-6625. · Zbl 0958.58004 · doi:10.1063/1.533110
[23] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space. Eur. Phys. J. C Part. Fields 52 (2007), 435-450. · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[24] H. Grosse and R. Wulkenhaar, Renormalisation of 4-theory on noncommutative R4 in the matrix base. Comm. Math. Phys. 256 (2005), 305-374. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[25] J. T. Hartwig, D. Larsson, and S. D. Silvestrov, Deformations of Lie algebras using -derivations. J. Algebra 295 (2006), 314-361. · Zbl 1138.17012 · doi:10.1016/j.jalgebra.2005.07.036
[26] G. Landi, An introduction to noncommutative spaces and their geometries . Lecture Notes in Phys. New Ser. m Monogr. 51, Springer-Verlag, Berlin 1997. · Zbl 0909.46060
[27] E. Langmann and R. J. Szabo, Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533 (2002), 168-177. · Zbl 0994.81116 · doi:10.1016/S0370-2693(02)01650-7
[28] D. Larsson and S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2- cocycle-like identities. J. Algebra 288 (2005), 321-344. · Zbl 1099.17015 · doi:10.1016/j.jalgebra.2005.02.032
[29] P. A. B. Lecomte, P. W. Michor, and H. Schicketanz, The multigraded Nijenhuis- Richardson algebra, its universal property and applications. J. Pure Appl. Algebra 77 (1992), 87-102. · Zbl 0752.17019 · doi:10.1016/0022-4049(92)90032-B
[30] D. A. Leites, Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk 35 (1980), no. 1, 3-57; English transl. Russian Math. Surveys 35 (1980), no. 1, 1-64. · Zbl 0462.58002 · doi:10.1070/RM1980v035n01ABEH001545
[31] T. Masson, Géométrie non commutative et applications à la théorie des champs. PhD thesis, Université Paris XI, Paris 1995.
[32] T. Masson, Submanifolds and quotient manifolds in noncommutative geometry. J. Math. Phys. 37 (1996), 2484-2497. · Zbl 0877.58006 · doi:10.1063/1.531522
[33] T. Masson, On the noncommutative geometry of the endomorphism algebra of a vector bundle. J. Geom. Phys. 31 (1999), 142-152. · Zbl 0940.46046 · doi:10.1016/S0393-0440(99)00009-1
[34] T. Masson, Noncommutative generalization of SU.n/-principal fiber bundles: a review. J. Phys. Conf. Ser. 103 (2008), 012003.
[35] T. Masson, Examples of derivation-based differential calculi related to noncommutative gauge theories. Int. J. Geom. Methods Mod. Phys. 5 (2008), 1315-1336. · Zbl 1165.81384 · doi:10.1142/S021988780800334X
[36] S. Minwalla, M. Van Raamsdonk, and N. Seiberg, Noncommutative perturbative dynam- ics. J. High Energy Phys. 02 (2000), 020. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[37] C. N\?ast\?asescu and F. van Oystaeyen, Graded ring theory . North-Holland Math. Library 28, North-Holland Publishing Co., Amsterdam 1982. · Zbl 0494.16001
[38] V. Rittenberg and D. Wyler, Generalized superalgebras. Nuclear Phys. B 139 (1978), 189-202. · Zbl 0423.17004
[39] M. Scheunert, Generalized Lie algebras. J. Math. Phys. 20 (1979), no. 4, 712-720. · Zbl 0423.17003 · doi:10.1063/1.524113
[40] A. A. Slavnov, Consistent non-commutative quantum gauge theories? Phys. Lett. B 565 (2003), 246-252. · Zbl 1072.81556 · doi:10.1016/S0370-2693(03)00726-3
[41] J. C. Várilly and J. M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra. J. Math. Phys. 29 (1988), 880-887. · Zbl 0652.46027 · doi:10.1063/1.527984
[42] J. C. Wallet, Algebraic set-up for the gauge-fixing of BF and super BF systems. Phys. Lett. B 235 (1990), 71-78.
[43] J.-C. Wallet, Noncommutative induced gauge theories on Moyal spaces. J. Phys. Conf. Ser. 103 (2008), 012007.
[44] J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), 013. · Zbl 1160.81470 · doi:10.3842/SIGMA.2009.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.